Skip to main content

In Situ Functional Imaging of Sensory Receptors in Lung Models

  • Chapter
  • First Online:
Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 211))

  • 469 Accesses

Abstract

To unravel the complex maze of electrophysiologically and neurochemically identified pulmonary mechanoreceptors, combined morphological and physiological studies will be essential to achieve a better understanding of the sensory interactions between the periphery (lung and airways) and the central nervous system. Reliable data may be obtained using lung models that combine the visualisation of morphologically characterised pulmonary receptors, and the possibility to study their physiological properties directly. We therefore attempted to develop ex vivo lung models in combination with vital staining, as in situ models that potentially allow functional studies of the three morphologically identified pulmonary receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25it1;ndash;40

    Article  Google Scholar 

  • Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960it1;ndash;970

    Article  PubMed  CAS  Google Scholar 

  • Avadhanam KP, Plopper CG, Pinkerton KE (1997) Mapping the distribution of neuroepithelial bodies of the rat lung. A whole-mount immunohistochemical approach. Am J Pathol 150:851it1;ndash;859

    PubMed  CAS  Google Scholar 

  • Bergner A, Sanderson MJ (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am J Physiol Lung Cell Mol Physiol 283:L1271it1;ndash;L1279

    PubMed  CAS  Google Scholar 

  • Biscoe TJ, Duchen MR (1990) Cellular basis of transduction in carotid chemoreceptors. Am J Physiol 258:L271it1;ndash;L278

    PubMed  CAS  Google Scholar 

  • Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33:287it1;ndash;294

    Article  PubMed  CAS  Google Scholar 

  • Cochilla AJ, Angleson JK, Betz WJ (1999) Monitoring secretory membrane with FM1-43 fluorescence. Annu Rev Neurosci 22:1it1;ndash;10

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Timmermans J-P, Adriaensen D (2007a) Selective visualisation of sensory receptors in the smooth muscle layer of ex vivo airway whole mounts by styryl pyridinium dyes. Cell Tissue Res 329:421it1;ndash;431

    Article  PubMed  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180it1;ndash;189

    Article  PubMed  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153it1;ndash;1160

    Article  PubMed  Google Scholar 

  • Delmotte P, Sanderson MJ (2006) Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 35:110it1;ndash;117

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (1992) Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283:41it1;ndash;50

    PubMed  CAS  Google Scholar 

  • Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529(1):57it1;ndash;68

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wang YT, Cutz E (1999) Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. J Physiol 514:139it1;ndash;150

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wong V, Cutz E (2002) Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol 539:503it1;ndash;510

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse C, Cutz E (2007) Characterization of slowly inactivating KVit1;e_x00E1; current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine. Am J Physiol Lung Cell Mol Physiol 293:L892it1;ndash;L902

    Article  PubMed  CAS  Google Scholar 

  • Fukuda J, Ishimine H, Masaki Y (2003) Long-term staining of live Merkel cells with FM dyes. Cell Tissue Res 311:325it1;ndash;332

    PubMed  Google Scholar 

  • Hayashi T, Kawakami M, Sasaki S, Katsumata T, Mori H, Yoshida H, Nakahari T (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90:535it1;ndash;544

    Article  PubMed  CAS  Google Scholar 

  • Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533it1;ndash;538

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Wiegand S, Akinci S, Wessler I, Schinkel AH, Wess J, Koepsell H, Haberberger RV, Lips KV (2006) Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir Res 7:65

    Article  PubMed  Google Scholar 

  • Larson SD, Schelegle ES, Hyde DM, Plopper CG (2003) The three-dimensional distribution of nerves along the entire intrapulmonary airway tree of the adult rat and the anatomical relationship between nerves and neuroepithelial bodies. Am J Respir Cell Mol Biol 28:592it1;ndash;599

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Lommel A (1986) Effect of various vagotomy procedures on the reaction to hypoxia of rabbit neuroepithelial bodies: modulation by intrapulmonary axon reflexes. Exp Lung Res 11:319it1;ndash;339

    Article  PubMed  CAS  Google Scholar 

  • Liberati TA, Randle MR, Toth LA (2010) In vitro lung slices: a powerful approach for assessment of lung pathophysiology. Expert Rev Mol Diagn 10:501it1;ndash;508

    Article  PubMed  Google Scholar 

  • Loew LM, Cohen LB, Salzberg BM, Obaid AL, Bezanilla F (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71it1;ndash;77

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB (2004) Sensory regulation of the cough reflex. Pulm Pharmacol Ther 17:361it1;ndash;368

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB (2005) An overview of the sensory receptors regulating cough. Cough 1:2

    Article  PubMed  Google Scholar 

  • Mazzone SB, Canning BJ (2003) Identification of the afferent nerves mediating cough in guinea pigs. FASEB J 17:A822

    Google Scholar 

  • Mazzone SB, McGovern AE (2008) Immunohistochemical characterization of nodose cough receptor neurons projecting to the trachea of guinea pigs. Cough 4:9

    Article  PubMed  Google Scholar 

  • Mewes H-W, Rafael J (1981) The 2-(dimethylaminostyryl)-1-methylpyridinium cation as indicator of the mitochondrial membrane potential. FEBS Lett 131:7it1;ndash;10

    Article  PubMed  CAS  Google Scholar 

  • Meyers JR, MacDonald RB, Duggan A, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054it1;ndash;4065

    PubMed  CAS  Google Scholar 

  • Perez JF, Sanderson MJ (2005) The frequency of calcium oscillations induced by 5-HT, Ach, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125:535it1;ndash;553

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans J-P, Adriaensen D (2005) Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di-2-ASP in various animal species. Cell Tissue Res 321:21it1;ndash;33

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans J-P, Adriaensen D (2007) Sensory receptors in the visceral pleura. Neurochemical coding and live staining in whole mounts. Am J Respir Cell Mol Biol 36:541it1;ndash;551

    Article  PubMed  CAS  Google Scholar 

  • Rafael J, Nicholls DG (1984) Mitochondrial membrane potential monitored in situ within isolated guinea pig brown adipocytes by a styryl pyridinium fluorescent indicator. FEBS Lett 170:181it1;ndash;185

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA (2001) Presynaptic imaging techniques. Curr Opin Neurobiol 11:544it1;ndash;549

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ (2011) Exploring lung physiology in health and disease with lung slices. Pulm Pharmacol Ther

    Google Scholar 

  • Smiley-Jewell SM, Tran MU, Weir AJ, Johnson ZA, Van Winkle LS, Plopper CG (2002) Three-dimensional mapping of smooth muscle in the distal conducting airways of mouse, rabbit, and monkey. J Appl Physiol 93:1506it1;ndash;1514

    PubMed  CAS  Google Scholar 

  • Van Scott MR, Chinet TC, Burnette AD, Paradiso AM (1995) Purinergic regulation of ion transport across nonciliated bronchiolar epithelial (Clara) cells. Am J Physiol 269:L30it1;ndash;L37

    PubMed  Google Scholar 

  • Weichselbaum M, Everett AW, Sparrow MP (1996) Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP9.5 and SV2. Am J Respir Cell Mol Biol 15:703it1;ndash;710

    PubMed  CAS  Google Scholar 

  • Xiong J, Camello PJ, Verkhratsky A, Toescu EC (2004) Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging 25:349it1;ndash;359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Brouns .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brouns, I., Pintelon, I., Timmermans, JP., Adriaensen, D. (2012). In Situ Functional Imaging of Sensory Receptors in Lung Models. In: Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors. Advances in Anatomy, Embryology and Cell Biology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22772-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22772-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22771-4

  • Online ISBN: 978-3-642-22772-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics