Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 211))

  • 468 Accesses

Abstract

The “neurochemical coding” is the combination of chemical features (e.g., structural proteins, molecular receptors, neurotransmitter content) that defines a neuronal cell type or certain nerve fibre population. With the advances of immunohistochemistry, in combination with confocal microscopy, intrapulmonary airway sensory nerve fibres and the concomitant airway receptor end-structures can now be examined in detail and evaluated objectively (Yu 2009). Moreover, application of these techniques potentially allows to clearly evaluate the relationship of primary afferents with associated tissues and cells, and to get more profound insights into their potential functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks RW, Bewick GS, Reid B, Richardson C (2002) Evidence for activity-dependent modulation of sensory-terminal excitability in spindles by glutamate release from synaptic-like vesicles. Adv Exp Med Biol 508:13–18

    Article  PubMed  Google Scholar 

  • Bewick GS, Reid B, Richardson C, Banks RW (2005) Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562:381–394

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61

    PubMed  CAS  Google Scholar 

  • Brouns I, De Proost I, Pintelon I, Timmermans J-P, Adriaensen D (2006a) Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 126–127:307–319

    Article  PubMed  Google Scholar 

  • Brouns I, Pintelon I, De Proost I, Alewaters R, Timmermans J-P, Adriaensen D (2006b) Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies. Histochem Cell Biol 125:351–367

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans J-P, Adriaensen D (2009b) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131:55–74

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009) Purines and sensory nerves. Handb Exp Pharmacol (194):333–392

    Google Scholar 

  • Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10:2373–2396

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D (2003) Stretch receptor-associated expression of alpha 3 isoform of the Na+, K+-ATPase in rat peripheral nervous system. Neuroscience 116:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Duc C, Barakat-Walter I, Droz B (1994) Innervation of putative rapidly adapting mechanorecptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271

    Article  PubMed  CAS  Google Scholar 

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud H-R, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium- binding proteins. J Comp Neurol 398:289–307

    Article  PubMed  Google Scholar 

  • Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaida SI, Massari VJ, Ferguson DG (2005) Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol 98:1961–1982

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto H, Kuwano R (1994) Immunohistochemical demonstration of calbindin-containing nerve endings in the rat esophagus. Cell Tissue Res 278:57–64

    Article  PubMed  CAS  Google Scholar 

  • Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ (2008) P2X2 receptors differentiate placodal versus neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 295:L858–L865

    Article  PubMed  CAS  Google Scholar 

  • Lachamp P, Crest M, Kessler JP (2006) Vesicular glutamate transporters type 1 and 2 expression in axon terminals of the rat nucleus of the solitary tract. Neuroscience 137:73–81

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AJ (1995) Neurotransmitter mechanisms of rat vagal afferent neurons. Clin Exp Pharmacol Physiol 22:869–873

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Gould VE, Moll R, Wiedenmann B, Franke WW (1987) Synatophysin expressed in the bronchopulmonary tract: neuroendocrine cells, neuroepithelial bodies, and neuroendocrine neoplasms. Differentiation 34:115–125

    Article  PubMed  CAS  Google Scholar 

  • Lembrechts R, Pintelon I, Schnorbusch K, Timmermans J-P, Adriaensen D, Brouns I (2011) Expression of mechanogated Two-pore-domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell Biol

    Google Scholar 

  • Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ (2010) Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 588:4769–4783

    Article  PubMed  CAS  Google Scholar 

  • Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T (1997a) Calretinin-like immunoreactivity in the Ruffini endings, slowly adapting mechanoreceptors, of the periodontal ligament of the rat incisor. Brain Res 769:183–187

    Article  PubMed  CAS  Google Scholar 

  • Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T (1997b) Immunohistochemical localization of calbindin D28k in the periodontal Ruffini endings of rat incisors. Neurosci Lett 228:195–198

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Luk C, Kent G, Cutz E, Yeger H (2006a) Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol 35:320–326

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans J-P, Adriaensen D (2007) Sensory receptors in the visceral pleura. Neurochemical coding and live staining in whole mounts. Am J Respir Cell Mol Biol 36:541–551

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function. Cell Tissue Res 312:141–148

    PubMed  CAS  Google Scholar 

  • Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300

    Article  PubMed  CAS  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research ? Neurosci Res 55:343–351

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Clark T, Undem BJ (2006) Transduction mechanisms in airway sensory nerves. J Appl Physiol 101:950–959

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Yu J (2002) Na+/K+-ATPase as a marker for detecting pulmonary sensory receptors. Sheng Li Xue Bao 54:390–394

    PubMed  CAS  Google Scholar 

  • Wang Y-F, Yu J (2004) Structural survey of airway sensory receptors in rabbit using confocal microscopy. Acta Physiologica Sinica 56:119–129

    PubMed  Google Scholar 

  • Yamamoto Y, Atoji Y, Suzuki Y (1999) Calretinin immunoreactive nerve endings in the trachea and bronchi of the rat. J Vet Med Sci 61:267–269

    Article  PubMed  CAS  Google Scholar 

  • Yu J (2009) Airway receptors and their reflex function. In: Gonzalez C, Peers C, Nurse CA (eds) Arterial Chemoreceptors. pp 411–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Brouns .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brouns, I., Pintelon, I., Timmermans, JP., Adriaensen, D. (2012). The Neurochemical Coding of Airway Afferents. In: Novel Insights in the Neurochemistry and Function of Pulmonary Sensory Receptors. Advances in Anatomy, Embryology and Cell Biology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22772-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22772-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22771-4

  • Online ISBN: 978-3-642-22772-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics