Skip to main content

Connecting Environmental Stimuli and Crassulacean Acid Metabolism Expression: Phytohormones and Other Signaling Molecules

  • Chapter
Book cover Progress in Botany 73

Part of the book series: Progress in Botany ((BOTANY,volume 73))

Abstract

Plasticity in Crassulacean acid metabolism (CAM) expression has long been recognized to occur both within and between species, and a range of environmental cues is implicated in both long- and short-term regulation of CAM operation. Important insights into the signal transduction chains between environmental stimuli and CAM expression are now available, and our discussion is focused on these recent findings. The role of plant hormones, nitric oxide, reactive oxygen species, intracellular calcium, protein phosphatases, and kinases in the signaling cascades leading to changes in CAM expression in response to water availability, salinity, light intensity, and photo- and thermoperiod is discussed. Whenever possible, differences and similarities among the signaling elements controlling CAM expression in distinct CAM plant models are highlighted. Conceivably, many other aspects of the signaling processes leading to CAM expression are still to be elucidated; therefore, some potential strategies to improve our knowledge in this field are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker DH, Marszalek J, Zimpfer JF, Adams WW (2004) Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum. Funct Plant Biol 31:781–787

    CAS  Google Scholar 

  • Behzadipour M, Ratajczak R, Faist K, Pawlitschek P, Trémolières A, Kluge M (1998) Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoë daigremontiana Ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition. J Membr Biol 166:61–70

    PubMed  CAS  Google Scholar 

  • Black CC, Osmond CB (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth Res 76:329–341

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    CAS  Google Scholar 

  • Borland AM, Dodd AN (2002) Carbohydrate partitioning in Crassulacean acid metabolism plants: reconciling potential conflicts of interest. Funct Plant Biol 29:707–716

    CAS  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J Exp Bot 55:1255–1265

    PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in Crassulacean acid metabolism. Plant Physiol 121:889–896

    PubMed  CAS  Google Scholar 

  • Borland A, Elliott S, Patterson S, Taybi T, Cushman J, Pater B, Barnes J (2006) Are the metabolic components of Crassulacean acid metabolism up-regulated in response to an increase in oxidative burden? J Exp Bot 57:319–328

    PubMed  CAS  Google Scholar 

  • Broetto F, Lüttge U, Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct Plant Biol 29:13–23

    CAS  Google Scholar 

  • Brulfert J, Guerrier D, Queiroz O (1975) Photoperiodism and enzyme rhythms: kinetic characteristics of photoperiodic induction of Crassulacean acid metabolism. Planta 125:33–44

    CAS  Google Scholar 

  • Brulfert J, Guerrier D, Queiroz O (1982) Photoperiodism and Crassulacean acid metabolism. 2. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction. Planta 154:332–338

    CAS  Google Scholar 

  • Brulfert J, Guclu S, Taybi T, Pierre JN (1993) Enzymatic responses to water stress in detached leaves of the CAM plant Kalanchoë blossfeldiana Poelln. Plant Physiol Biochem 31:491–497

    CAS  Google Scholar 

  • Brulfert J, Ravelomanana D, Guclu S, Kluge M (1996) Ecophysiological studies in Kalanchoë porphyrocalyx (Baker) and K. miniata (Hils et Bojer), two species performing highly flexible CAM. Photosynth Res 49:29–36

    CAS  Google Scholar 

  • Cela J, Arrom L, Munne-Bosch S (2009) Diurnal changes in photosystem II photochemistry, photoprotective compounds and stress-related phytohormones in the CAM plant, Aptenia cordifolia. Plant Sci 177:404–410

    CAS  Google Scholar 

  • Cheng SH, Edwards GE (1991) Influence of long photoperiods on plant development and expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Cell Environ 14:271–278

    CAS  Google Scholar 

  • Christopher JT, Holtum JAM (1996) Patterns of carbon partitioning in leaves of Crassulacean acid metabolism species during deacidification. Plant Physiol 112:393–399

    PubMed  CAS  Google Scholar 

  • Chu C, Dai ZY, Ku MSB, Edwards GE (1990) Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol 93:1253–1260

    PubMed  CAS  Google Scholar 

  • Cockburn W, Whitelam GC, Broad A, Smith J (1996) The participation of phytochrome in the signal transduction pathway of salt stress responses in Mesembryanthemum crystallinum L. J Exp Bot 47:647–653

    CAS  Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of Crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci USA 101:3703–3708

    PubMed  CAS  Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (1992a) Salt stress alters A/T-rich DNA-binding factor interactions within the phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum. Plant Mol Biol 20:411–424

    PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (1992b) Salt stress induction of Crassulacean acid metabolism in a facultative CAM plant. Photosynth Res 34:103–103

    Google Scholar 

  • Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    PubMed  CAS  Google Scholar 

  • Cushman J, Bohnert HJ (2004) Induction of Crassulacean acid metabolism by salinity – molecular aspects. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 361–393

    Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    PubMed  CAS  Google Scholar 

  • Cushman JC, Michalowski CB, Bohnert HJ (1990) Developmental control of Crassulacean acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol 94:1137–1142

    PubMed  CAS  Google Scholar 

  • Dai Z, Ku MSB, Zhang DZ, Edwards GE (1994) Effects of growth regulators on the induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum L. Planta 192:287–294

    CAS  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry 71:461–465

    PubMed  CAS  Google Scholar 

  • Eastmond PJ, Ross JD (1997) Evidence that the induction of Crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signalling. Plant Cell Environ 20:1559–1565

    CAS  Google Scholar 

  • Edwards GE, Dai Z, Cheng SH, Mu MSB (1996) Factors affecting the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution, vol 114. Springer, Berlin, pp 119–134

    Google Scholar 

  • Forsthoefel NR, Cushman MAF, Cushman JC (1995a) Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol 108:1185–1195

    PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Vernon DM, Cushman JC (1995b) A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol Biol 29:213–226

    PubMed  CAS  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1991) The influence of nitrogen, light and water stress on CO2 exchange and organic acid accumulation in the tropical C3-CAM tree, Clusia minor. J Exp Bot 42:597–603

    CAS  Google Scholar 

  • Freschi L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, Kaiser WM, Mercier H (2010a) Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. Plant Physiol 152:1971–1985

    PubMed  CAS  Google Scholar 

  • Freschi L, Takahashi CA, Cambui CA, Semprebom TR, Cruz AB, Mioto PT, Versieux LD, Calvente A, Latansio-Aidar SR, Aidar MPM, Mercier H (2010b) Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J Plant Physiol 167:526–533

    PubMed  CAS  Google Scholar 

  • Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in Crassulacean acid metabolism plants. Planta 174:453–461

    CAS  Google Scholar 

  • Gehrig HH, Aranda J, Cushman MA, Virgo A, Cushman JC, Hammel BE, Winter K (2003) Cladogram of Panamanian Clusia based on nuclear DNA: implications for the origins of Crassulacean acid metabolism. Plant Biol 5:59–70

    CAS  Google Scholar 

  • Grams TEE, Thiel S (2002) High light-induced switch from C3-photosynthesis to Crassulacean acid metabolism is mediated by UV-A/blue light. J Exp Bot 53:1475–1483

    PubMed  CAS  Google Scholar 

  • Gregory FG, Spear I, Thimann KV (1954) The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol 29:220–229

    PubMed  CAS  Google Scholar 

  • Guralnick LJ, Ting IP (1986) Seasonal response to drought and rewatering in Portulacaria afra (L.) Jacq. Oecologia 70:85–91

    Google Scholar 

  • Guralnick LJ, Ku MSB, Edwards GE, Strand D, Hockema B, Earnest J (2001) Induction of PEP carboxylase and Crassulacean acid metabolism by gibberellic acid in Mesembryanthemum crystallinum. Plant Cell Physiol 42:236–239

    PubMed  CAS  Google Scholar 

  • Haag-Kerwer A, Franco AC, Lüttge U (1992) The effect of temperature and light on gas-exchange and acid accumulation in the C3-CAM plant Clusia minor L. J Exp Bot 43:345–352

    CAS  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463

    CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. J Plant Growth Regul 23:79–103

    CAS  Google Scholar 

  • Herppich W, Herppich M, Vonwillert DJ (1992) The irreversible C3 to CAM shift in well-watered and salt-stressed plants of Mesembryanthemum crystallinum is under strict ontogenic control. Bot Acta 105:34–40

    CAS  Google Scholar 

  • Herrera A (1999) Effects of photoperiod and drought on the induction of Crassulacean acid metabolism and the reproduction of plants of Talinum triangulare. Can J Bot 77:404–409

    CAS  Google Scholar 

  • Herrera A (2009) Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann Bot (London) 103:645–653

    CAS  Google Scholar 

  • Herrera A, Ballestrini C, Tezara W (2008) Nocturnal sap flow in the C3-CAM species, Clusia minor. Trees 22:491–497

    Google Scholar 

  • Herzog B, Hoffmann S, Hartung W, Lüttge U (1999) Comparison of photosynthetic responses of the sympatric tropical C3 species Clusia multiflora H. B. K. and the C3-CAM intermediate species Clusia minor L. to irradiance and drought stress in a phytotron. Plant Biol 1:460–470

    CAS  Google Scholar 

  • Huang NC, Li CH, Lee JY, Yen HE (2010) Cytosine methylation changes in the ice plant Ppc1 promoter during transition from C3 to Crassulacean acid metabolism. Plant Sci 178:41–46

    CAS  Google Scholar 

  • Hurst AC, Grams TEE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Environ 27:187–197

    CAS  Google Scholar 

  • Ishitani M, Xiong LM, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    PubMed  CAS  Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164:S55–S77

    CAS  Google Scholar 

  • Kliemchen A, Schomburg M, Galla H-J, Lüttge U, Kluge M (1993) Adaptive changes in the fluidity of a tonoplast membrane of a CAM plant. Planta 189:403–409

    CAS  Google Scholar 

  • Kluge M, Wolf H, Fischer A (1991) Crassulacean acid metabolism: temperature effects on the lag-phase in the photosynthetic oxygen evolution occurring at the outset of the light period. Plant Physiol Biochem 29:83–90

    Google Scholar 

  • Kornas A, Miszalski Z, Surowka E, Fischer-Schliebs E, Lüttge U (2010) Light stress is not effective to enhanced Crassulacean acid metabolism. Z Naturforsch C 65:79–86

    PubMed  CAS  Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    PubMed  CAS  Google Scholar 

  • Lüttge U (1993) The role of Crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol 125:59–71

    Google Scholar 

  • Lüttge U (2000) Light-stress and Crassulacean acid metabolism. Phyton 40:65–82

    Google Scholar 

  • Lüttge U (2004a) Ecophysiology of Crassulacean acid metabolism (CAM). Ann Bot (London) 93:629–652

    Google Scholar 

  • Lüttge U (2004b) Performance of plants with C4-carboxylation modes of photosynthesis under salinity. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 341–360

    Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25

    PubMed  Google Scholar 

  • Lüttge U, Beck F (1992) Endogenous rhythms and chaos in Crassulacean acid metabolism. Planta 188:28–38

    Google Scholar 

  • Maxwell K (2002) Resistance is useful: diurnal patterns of photosynthesis in C3 and Crassulacean acid metabolism epiphytic bromeliads. Funct Plant Biol 29:679–687

    CAS  Google Scholar 

  • Maxwell C, Griffiths H, Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Funct Ecol 8:746–754

    Google Scholar 

  • Maxwell K, Marrison JL, Leech RM, Griffiths H, Horton P (1999) Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. Plant Physiol 121:89–95

    PubMed  CAS  Google Scholar 

  • McElwain EF, Bohnert HJ, Thomas JC (1992) Light moderates the induction of phosphoenolpyruvate carboxylase by NaCl and abscisic acid in Mesembryanthemum crystallinum. Plant Physiol 99:1261–1264

    PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    PubMed  CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    PubMed  CAS  Google Scholar 

  • Miszalski Z, Slesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    CAS  Google Scholar 

  • Miszalski Z, Niewiadomska E, Slesak I, Lüttge U, Kluge M, Ratajczak R (2001) The effect of irradiance on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress. Plant Biol 3:17–23

    CAS  Google Scholar 

  • Miyazaki S, Koga R, Bohnert HJ, Fukuhara T (1999) Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet 261:307–316

    PubMed  CAS  Google Scholar 

  • Neales TF, Sale PJM, Meyer CP (1980) Carbon dioxide assimilation by pineapple plants, Ananas comosus (L) Merr. 2. Effects of variation of the day/night temperature regime. Aust J Plant Physiol 7:375–385

    Google Scholar 

  • Nievola CC, Kraus JE, Freschi L, Souza BM, Mercier H (2005) Temperature determines the occurrence of CAM or C3 photosynthesis in pineapple plantlets grown in vitro. In Vitro Cell Dev Biol 41:832–837

    CAS  Google Scholar 

  • Niewiadomska E, Borland AM (2008) Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer, Heidelberg, pp 247–266

    Google Scholar 

  • Niewiadomska E, Miszalski Z, Slesak I, Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryanthemum crystallinum L. leaves. Free Radic Res 31:S251–S256

    PubMed  CAS  Google Scholar 

  • Niewiadomska E, Pater B, Miszalski Z (2002) Does ozone induce a C3-CAM transition in Mesembryanthemum crystallinum leaves? Phyton 42:69–78

    CAS  Google Scholar 

  • Niewiadomska E, Karpinska B, Romanowska E, Slesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794

    PubMed  CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism. Curiosity in context. Annu Rev Plant Physiol 29:379–414

    CAS  Google Scholar 

  • Patel A, Ting IP (1987) Relationship between respiration and CAM-cycling in Peperomia camptotricha. Plant Physiol 84:640–642

    PubMed  CAS  Google Scholar 

  • Peters W, Beck E, Piepenbrock M, Lenz B, Schmitt JM (1997) Cytokinin as a negative effector of phosphoenolpyruvate carboxylase induction in Mesembryanthemum crystallinum. J Plant Physiol 151:362–367

    CAS  Google Scholar 

  • Piepenbrock M, Schmitt JM (1991) Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L. Plant Physiol 97:998–1003

    PubMed  CAS  Google Scholar 

  • Piepenbrock M, Vonalbert C, Schmitt JM (1994) Decreasing leaf water content induces Crassulacean acid metabolism in well-irrigated Mesembryanthemum crystallinum. Photosynthetica 30:623–628

    CAS  Google Scholar 

  • Pospisilova J, Synkova H, Rulcova J (2000) Cytokinins and water stress. Biol Plantarum 43:321–328

    CAS  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travniakova A, Batkova P (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plantarum 49:533–540

    CAS  Google Scholar 

  • Riera M, Valon C, Fenzi F, Giraudat J, Leung J (2005) The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components. Physiol Plantarum 123:111–119

    CAS  Google Scholar 

  • Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190

    PubMed  CAS  Google Scholar 

  • Ruess BR, Ferrari S, Eller BM (1988) Water economy and photosynthesis of the CAM plant Senecio medley-woodii during increasing drought. Plant Cell Environ 11:583–589

    Google Scholar 

  • Sato K, Ohsato H, Izumi S, Miyazaki S, Bohnert HJ, Moriyama H, Fukuhara T (2007) Diurnal expression of five protein phosphatase type 2C genes in the common ice plant, Mesembryanthemum crystallinum. Funct Plant Biol 34:581–588

    CAS  Google Scholar 

  • Schmitt JM, Piepenbrock M (1992) Regulation of phosphoenolpyruvate carboxylase and Crassulacean acid metabolism induction in Mesembryanthemum crystallinum L by cytokinin. Modulation of leaf gene expression by roots? Plant Physiol 99:1664–1669

    PubMed  CAS  Google Scholar 

  • Schmitt J, Fisslthaler B, Sheriff A, Lenz B, Bässler M, Meyer G (1996) Environmental control of CAM induction in Mesembryanthemum crystallinum: a role for cytokinin, abscisic acid and jasmonate? In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution, vol 114. Springer, Berlin, pp 159–175

    Google Scholar 

  • Silvera K, Santiago LS, Winter K (2005) Distribution of Crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Funct Plant Biol 32:397–407

    CAS  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the Crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    CAS  Google Scholar 

  • Sipes DL, Ting IP (1985) Crassulacean acid metabolism and Crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77:59–63

    PubMed  CAS  Google Scholar 

  • Slesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677

    CAS  Google Scholar 

  • Slesak I, Karpinska B, Surowka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    PubMed  CAS  Google Scholar 

  • Slesak I, Libik M, Miszalski Z (2008) The foliar concentration of hydrogen peroxide during salt-induced C3-CAM transition in Mesembryanthemum crystallinum L. Plant Sci 174:221–226

    CAS  Google Scholar 

  • Stetsenko LA, Rakitin VY, Shevyakova NI, Kuznetsov VV (2009) Organ-specific changes in the content of free and conjugated polyamines in Mesembryanthemum crystallinum plants under salinity. Russ J Plant Physiol 56:808–813

    CAS  Google Scholar 

  • Taisma MA, Herrera A (2003) Drought under natural conditions affects leaf properties, induces CAM and promotes reproduction in plants of Talinum triangulare. Interciencia 28:292–297

    Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266

    PubMed  CAS  Google Scholar 

  • Taybi T, Cushman JC (1999) Signaling events leading to Crassulacean acid metabolism induction in the common ice plant. Plant Physiol 121:545–555

    PubMed  CAS  Google Scholar 

  • Taybi T, Cushman JC (2002) Abscisic acid signaling and protein synthesis requirements for phosphoenolpyruvate carboxylase transcript induction in the common ice plant. J Plant Physiol 159:1235–1243

    Google Scholar 

  • Taybi T, Sotta B, Gehrig H, Guclu S, Kluge M, Brulfert J (1995) Differential effects of abscisic acid on phosphoenolpyruvate carboxylase and CAM operation in Kalanchoë blossfeldiana. Bot Acta 108:240–246

    CAS  Google Scholar 

  • Taybi T, Patil S, Chollet R, Cushman JC (2000) A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in Crassulacean acid metabolism-induced leaves of the common ice plant. Plant Physiol 123:1471–1481

    PubMed  CAS  Google Scholar 

  • Taybi T, Cushman JC, Borland AM (2002) Environmental, hormonal and circadian regulation of Crassulacean acid metabolism expression. Funct Plant Biol 29:669–678

    CAS  Google Scholar 

  • Taybi T, Nimmo HG, Borland AM (2004) Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic cavacity and phenotypic plasticity in the expression of Crassulacean acid metabolism. Plant Physiol 135:587–598

    PubMed  CAS  Google Scholar 

  • Thomas JC, Bohnert HJ (1993) Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum. Plant Physiol 103:1299–1304

    PubMed  CAS  Google Scholar 

  • Thomas JC, Mcelwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress responses. Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol 100:416–423

    PubMed  CAS  Google Scholar 

  • Ting IP (1981) Effects of abscisic acid on CAM in Portulacaria afra. Photosynth Res 2:39–48

    CAS  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36:595–622

    CAS  Google Scholar 

  • Tsiantis MS, Bartholomew DM, Smith JAC (1996) Salt regulation of transcript levels for the c subunit of a leaf vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J 9:729–736

    PubMed  CAS  Google Scholar 

  • Winter K (1973) Studies on NaCl-induced Crassulacean acid metabolism in Mesembryanthemum crystallinum. Planta 109:135–145

    CAS  Google Scholar 

  • Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of Crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95:768–776

    PubMed  CAS  Google Scholar 

  • Winter K, Holtum JAM (2007) Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol 143:98–107

    PubMed  CAS  Google Scholar 

  • Winter K, Ziegler H (1992) Induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia 92:475–479

    Google Scholar 

  • Winter K, Aranda J, Holtum JAM (2005) Carbon isotope composition and water-use efficiency in plants with Crassulacean acid metabolism. Funct Plant Biol 32:381–388

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helenice Mercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freschi, L., Mercier, H. (2012). Connecting Environmental Stimuli and Crassulacean Acid Metabolism Expression: Phytohormones and Other Signaling Molecules. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 73. Progress in Botany, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22746-2_9

Download citation

Publish with us

Policies and ethics