A Half-Century Adventure in the Dynamics of Living Systems

  • Michel ThellierEmail author
Part of the Progress in Botany book series (BOTANY, volume 73)


In response to the question “What is life”, molecular biology has provided knowledge concerning the structure and function of the constituents of living systems. However, there still remains the point about understanding the dynamics of the processes involved in the functioning of the system. In our contribution to this quest, we began by some methodological improvements (especially concerning stable as well as radioactive isotopic tracers, ionic interactions and electrode measurements) and their possible applications to scientific or practical problems. Enzymatic reactions, fluxes of solutes and signalling processes play a crucial role in the dynamics of living systems. We have studied several non-usual cases of enzyme kinetics, particularly the functioning of those proteins that assemble when participating in a task and disassemble when the task is over (functioning-dependent structures or FDSs), and we have found that these FDSs could induce original regulatory properties in metabolic pathways. By studying fluxes of solutes through artificial (enzyme-grafted gel slabs) or real (frog skin) barriers, we have compared apparent kinetic parameters of the system with the real molecular parameters, and we have shown that increasing the complexity of a system may permit to evaluate parameters of the system that cannot be obtained using a conventional, reductionist approach. Concerning the transport of solutes between cells and their external medium, we have proposed to substitute a formalism derived from non-equilibrium thermodynamics for the classical combination of rectangular hyperbolas; in this interpretation, the important parameter is equivalent to a conductance; moreover we introduce a “symmetry-criterion” that is especially well adapted to discriminate active from passive exchanges between cells and exterior (while the Ussing’s flux ratio equation remains the easiest way to discriminate active from passive exchanges through an epithelium). Plants are sensitive to a number of stimuli, biotic or non-biotic, traumatic or non-traumatic. Simplified systems (such as foliar discs or cell suspension cultures) have permitted us to study some cell responses to stimuli. With entire plants, we show that migration, storage and recall of information can also take place, and that a plant can recall stored information several times. From all that, we come to the conclusion that an important characteristic of living beings is that not only the processes within them are dynamic but that even their structure is dynamic for a part.


Active vs. passive transports Enzyme-grafted gel slabs Enzyme kinetics Flux-ration equation Functioning-dependent structures Information recall Information storage Isotopic tracers Plants Solute fluxes Stable isotopes Symmetry-criterion 

Abbreviations and Symbols


1-aminocyclopropane-1-carboxylic acid


Functioning-dependent structure


Malonyl-1-aminocyclopropane-1-carboxylic acid




Neutron capture radiography

RCL function

The function enabling plants to recall stored information


Secondary ion mass spectrometry


Simulation programme with integrated circuit emphasis

STO function

The function permitting plants to store morphogenetic information



I am especially indebted to Vic Norris for his critical reading and advice in the preparation of this text.


  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell, 3rd edn. Garland Publishing Inc, New York, pp 569–578Google Scholar
  2. Atkins GL (1973) Modèles à compartiments multiples pour les systèmes biologiques. Gauthiers-Villars, ParisGoogle Scholar
  3. Bali M, Thomas SR (2001) A modelling study of feed-forward activation in human erythrocyte glycolysis. C R Acad Sci Paris 324:185–199CrossRefPubMedGoogle Scholar
  4. Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA 103:13004–13009CrossRefPubMedGoogle Scholar
  5. Bichat X (1800) Recherches physiologiques sur la vie et la mort. Brosson. Gabon & Cie, Paris, p 1Google Scholar
  6. Bobik TA (2006) Polyhedral organelles compartmenting bacerial metabolic processes. Appl Microbiol Biotechnol 70:517–525CrossRefPubMedGoogle Scholar
  7. Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119:17–20CrossRefPubMedGoogle Scholar
  8. Buchler NE, Gerland U, Hwa T (2005) Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci USA 102:9559–9564CrossRefPubMedGoogle Scholar
  9. Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. CR Biol 331:788–795CrossRefGoogle Scholar
  10. Butler LG (1979) Enzymes in non-aqueous solvents. Enzyme Microb Technol 1:253–259CrossRefGoogle Scholar
  11. Carlier G (1973) Action d’inhibiteurs de la protéosynthèse sur la dynamique de l’absorption du glucose 14 C (u) par les disques foliaires de Pelargonium zonale (L) Aiton. Physiol Veg 11:553–559Google Scholar
  12. Castaing R, Slodzian G (1962) Microanalyse par émission secondaire. J Microsc 1:395–414Google Scholar
  13. Cheng S, Liu Y, Crowley CS, Yeates S, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. Bioessays 30:1–12CrossRefGoogle Scholar
  14. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139CrossRefPubMedGoogle Scholar
  15. Cornish-Bowden A (1991) Failure of channelling to maintain low concentrations of metabolic intermediates. Eur J Biochem 195:103–108CrossRefPubMedGoogle Scholar
  16. Dorée M, Legay JJ, Terrine C (1972) Flux de CO2 et modulation de perméabilité cellulaire chez les cellules d’Acer pseudoplatanus L. Physiol Veg 10:115–131Google Scholar
  17. Elzam OE, Hodges TK (1967) Calcium inhibition of potassium absorption in corn roots. Plant Physiol 42:1483–1488CrossRefPubMedGoogle Scholar
  18. Epstein E (1953) Mechanism of ion absorption by roots. Nature 171:83–84CrossRefPubMedGoogle Scholar
  19. Epstein E (1966) Dual pattern of ion absorption by plant cells and by plants. Nature 212:1324–1327CrossRefGoogle Scholar
  20. Epstein E, Leggett JE (1954) The absorption of alkaline-earth cations by barley roots: kinetics and mechanism. Am J Bot 41:785–791CrossRefGoogle Scholar
  21. Faraggi H, Kohn A, Doumerc J (1952) Sur une technique autoradiographique par irradiation neutronique de mise en évidence du constituant bore dans les aciers au bore. C R Acad Sci Paris 235:714–716PubMedGoogle Scholar
  22. Fick A (1951) Autoradiographie par neutrons: dosage du lithium dans les embryons d’amphibiens. C R Acad Sci Paris 233:1684–1685Google Scholar
  23. Francis D (2009) What’s new in the plant cell cycle. Prog Bot 70:33–49CrossRefGoogle Scholar
  24. Glass ADM (1976) Regulation of potassium absorption in barley roots: an allosteric model. Plant Physiol 58:33–37CrossRefPubMedGoogle Scholar
  25. Goh GH, Nam HG, Park YS (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in absissic acid-entrained Arabidopsis plants. Plant J 36:240–255CrossRefPubMedGoogle Scholar
  26. Hawkesford MJ, Davidian JC, Grignon C (1993) Sulphate/H+ co-transport in plasma membrane vesicles isolated from Brassica napus: increased transport in membranes isolated from suplhur-starved plants. Planta 190:297–304CrossRefGoogle Scholar
  27. Hillert M (1951) Nuclear reaction radiography. Nature 168:39–40CrossRefPubMedGoogle Scholar
  28. Hillion F, Daigne B, Girard F, Slodzian G (1997) The Cameca nanoSIMS50: experimental results. In: Benninghoven A, Hagenhoff B, Werner HW (eds) Secondary ion mass spectrometry SIMS X. Wiley, Chichester, pp 979–982Google Scholar
  29. Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1865CrossRefPubMedGoogle Scholar
  30. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279CrossRefPubMedGoogle Scholar
  31. Kahl G (1974) Metabolism in plant storage tissue slices. Bot Rev 40:264–314CrossRefGoogle Scholar
  32. Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MAGoogle Scholar
  33. Kepes F (2002) Secretory compartments as instances of dynamic self-evolving structures. Acta Biotheor 50:209–221CrossRefPubMedGoogle Scholar
  34. Larsson B, Gabel D, Börner HG (1984) Boron-loaded macromolecules in experimental physiology: tracing by neutron capture radiography. Phys Med Biol 29:361–370CrossRefPubMedGoogle Scholar
  35. Lavoisier AL (1801) Opuscules physiques et chimiques, 2nd edn. Deterville, Paris, pp 312–326Google Scholar
  36. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51:924–933CrossRefGoogle Scholar
  37. Manning GS (1996) The critical onset of counterion condensation: a survey of its experimental and theoretical basis. Ber Bunsenges Phys Chem 100:902–922CrossRefGoogle Scholar
  38. Marrè E (1980) Mechanism of action of phytotoxins affecting plasmalemma functions. Phytochemistry 6:253–284Google Scholar
  39. Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev 3:50–60CrossRefGoogle Scholar
  40. Mitchell P (1967) Active transport and ion accumulation. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 22. Elsevier, Amsterdam, pp 167–197Google Scholar
  41. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118CrossRefPubMedGoogle Scholar
  42. Nagel W (1977) Influence of lithium upon the intracellular potential of frog skin epithelium. J Membr Biol 37:347–359CrossRefPubMedGoogle Scholar
  43. Norris V, Fishov I (2001) Membrane domains, hyperstructures and cell division. Biochimie 83:91–98CrossRefPubMedGoogle Scholar
  44. Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37:405–426CrossRefGoogle Scholar
  45. Ovadi J (1988) Old pathway-new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci 13:486–490CrossRefPubMedGoogle Scholar
  46. Ovadi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:1–22CrossRefPubMedGoogle Scholar
  47. Pennetier G (1907) Un débat scientifique: Pouchet et Pasteur (1858–1868). In: Actes du Muséum d’Histoire Naturelle de Rouen, Tome XI, Imprimerie J. Girieud, Rouen, pp 1–55Google Scholar
  48. Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497CrossRefPubMedGoogle Scholar
  49. Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331:796–805CrossRefPubMedGoogle Scholar
  50. Reyes JC, Hennig L, Gruissem W (2002) Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol 130:1090–1101CrossRefPubMedGoogle Scholar
  51. Sinclair J (1988) Collins Cobuild (Collins Birmingham University International Language Database), English Language Dictionary. Collins ELT, London, p 906Google Scholar
  52. Spallanzani L (1787) Observations et expériences faites sur les animalcules des infusions. In: Opuscule de physique animale et végétale, Traduction de Jean Sennebier, Tome 1er, P. J. Duplain, Paris, pp 1–52 and 160–202Google Scholar
  53. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128CrossRefPubMedGoogle Scholar
  54. Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:21–56CrossRefGoogle Scholar
  55. Størmer FC, Wielgolaski FE (2010) Are magnetite and ferritin involved in plant memory? Rev Environ Sci Biotechnol 9:105–107CrossRefGoogle Scholar
  56. Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S (1997) Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 113:587–594PubMedGoogle Scholar
  57. Takenaka S (1936) Studies on the quasiperiodic oscillations of the electric potential of the frog skin. Jpn J Med Sci 4:143–197, 198–293Google Scholar
  58. Teorell T (1954) Rhythmical potential impedance variations in isolated frog skin induced by lithium ions. Acta Physiol Scand 31:268–284CrossRefPubMedGoogle Scholar
  59. Trewavas A (2003) Plant memory and information retrieval. In: Aspects of plant intelligence. Ann Bot 92:1–20CrossRefPubMedGoogle Scholar
  60. Trewavas A (1999) Le calcium c’est la vie: calcium waves. Plant Physiol 120:1–6CrossRefPubMedGoogle Scholar
  61. Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19:43–56CrossRefGoogle Scholar
  62. Ussing HH (1971) The interpretation of tracer fluxes in terms of active and passive transports. Physiol Veg 9:1–9Google Scholar
  63. Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Signal Behav 1:67–70CrossRefPubMedGoogle Scholar
  64. Winkel BSJ (2004) Metabolic channelling in glycolysis: a phantom phenomenon. Annu Rev Plant Biol 55:85–107CrossRefPubMedGoogle Scholar
  65. Wu X, Gutfreund H, Lakatos S, Chock PB (1991) Substrate channelling in glycolysis: a phantom phenomenon. Proc Natl Acad Sci USA 88:497–501CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire AMMIS, CNRS (DYCOEC: GDR 2984)Faculté des Sciences de l’Université de RouenMont-Saint-Aignan CedexFrance

Personalised recommendations