Skip to main content

Micromorphic vs. Phase-Field Approaches for Gradient Viscoplasticity and Phase Transformations

  • Conference paper
Advances in Extended and Multifield Theories for Continua

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 59))

Abstract

Strain gradient models and generalized continua are increasingly used to introduce characteristic lengths in the mechanical behavior of materials with microstructure. On the other hand, phase-field models have proved to be efficient tools to simulate microstructure evolution due to thermodynamical processes in the presence of mechanical deformation. It is shown that both methods have strong connections from the point of view of thermomechanical field theory. A general formulation of thermomechanics with additional degrees of freedom is presented that encompasses both applications as special cases. It is based on the introduction of additional power of internal forces introducing generalized stresses. The current knowledge in the formulation of physically non-linear constitutive equations is used to develop strongly coupled elastoviscoplastic material models involving phase transformation and moving boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrivard, G.: A coupled crystal plasticity–phase field formulation to describe microstructural evolution in polycrystalline aggregates. PhD, Mines ParisTech (2009)

    Google Scholar 

  2. Ammar, K., Appolaire, B., Cailletaud, G., Feyel, F., Forest, F.: Finite element formulation of a phase field model based on the concept of generalized stresses. Computational Materials Science 45, 800–805 (2009)

    Article  Google Scholar 

  3. Ammar, K., Appolaire, B., Cailletaud, G., Forest, S.: Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. European Journal of Computational Mechanics 18, 485–523 (2009)

    MATH  Google Scholar 

  4. Ammar, K., Appolaire, B., Cailletaud, G., Forest, S.: Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. Philosophical Magazine Letters (2011)

    Google Scholar 

  5. Appolaire, B., Aeby-Gautier, E., Teixeira, J.D., Dehmas, M., Denis, S.: Non-coherent interfaces in diffuse interface models. Philosophical Magazine 90, 461–483 (2010)

    Article  Google Scholar 

  6. Aslan, O., Forest, S.: Crack growth modelling in single crystals based on higher order continua. Computational Materials Science 45, 756–761 (2009)

    Article  Google Scholar 

  7. Aslan, O., Forest, S.: The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: de Borst, R., Ramm, E. (eds.) Multiscale Methods in Computational Mechanics. LNACM, vol. 55, pp. 135–154. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S., Blétry, M.: Non-Linear Mechanics of Materials. Series: Solid Mechanics and Its Applications, vol. 167, p. 433. Springer, Heidelberg (2009)

    Google Scholar 

  9. Cordero, N., Gaubert, A., Forest, S., Busso, E., Gallerneau, F., Kruch, S.: Size effects in generalised continuum crystal plasticity for two–phase laminates. Journal of the Mechanics and Physics of Solids 58, 1963–1994 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non–polar elasto–plastic solid materials. International Journal of Solids and Structures 35, 4597–4617 (1998)

    Article  MATH  Google Scholar 

  11. Engelen, R., Geers, M., Baaijens, F.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. International Journal of Plasticity 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  12. Eringen, A., Suhubi, E.: Nonlinear theory of simple microelastic solids. International Journal of Engineering Science 203, 189–203, 389–404 (1964)

    MathSciNet  Google Scholar 

  13. Finel, A., Le Bouar, Y., Gaubert, A., Salman, U.: Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendus Physique 11, 245–256 (2010)

    Article  Google Scholar 

  14. Forest, S.: The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE Journal of Engineering Mechanics 135, 117–131 (2009)

    Article  Google Scholar 

  15. Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. International Journal of Solids and Structures 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  16. Forest, S., Sievert, R.: Nonlinear microstrain theories. International Journal of Solids and Structures 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. International Journal of Solids and Structures 33, 1083–1103 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fried, E., Gurtin, M.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326–343 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gaubert, A., Finel, A., Le Bouar, Y., Boussinot, G.: Viscoplastic phase field modellling of rafting in ni base superalloys. In: Continuum Models and Discrete Systems CMDS11, pp. 161–166. Mines Paris Les Presses (2008)

    Google Scholar 

  20. Gaubert, A., Le Bouar, Y., Finel, A.: Coupling phase field and viscoplasticity to study rafting in ni-based superalloys. Philosophical Magazine 90, 375–404 (2010)

    Article  Google Scholar 

  21. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus, première partie : théorie du second gradient. Journal de Mécanique 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  22. Gurtin, M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Johnson, W.C., Alexander, J.I.D.: Interfacial conditions for thermomechanical equilibrium in two-phase crystals. Journal of Applied Physics 9, 2735–2746 (1986)

    Article  Google Scholar 

  24. Khachaturyan, A.: Theory of Structural Transformations in Solids. John Wiley & Sons, New York (1983)

    Google Scholar 

  25. Kim, S., Kim, W., Suzuki, T.: Interfacial compositions of solid and liquid in a phase–field model with finite interface thickness for isothermal solidification in binary alloys. Physical Review E 58(3), 3316–3323 (1998)

    Article  Google Scholar 

  26. Kim, S., Kim, W., Suzuki, T.: Phase–field model for binary alloys. Physical Review E 60(6), 7186–7197 (1999)

    Article  Google Scholar 

  27. Maugin, G.: The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mechanica 35, 1–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mayeur, J., McDowell, D., Bammann, D.: Dislocation-based micropolar single crystal plasticity: Comparison of multi- and single criterion theories. Journal of the Mechanics and Physics of Solids 59, 398–422 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., Vogel, F.: Numerical aspects in the finite element simulation of the portevin-le chatelier effect. Computer Methods in Applied Mechanics and Engineering 199, 734–754 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. Journal of the Mechanics and Physics of Solids 59, 898–923 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Miehe, C., Welchinger, F., Hofacker, M.: A phase field model of electromechanical fracture. Journal of the Mechanics and Physics of Solids 58, 1716–1740 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Miehe, C., Welchinger, F., Hofacker, M.: Thermodynamically–consistent phase field models of fracture: Variational principles and multifield FE implementations. International Journal for Numerical Methods in Engineering 83, 1273–1311 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mindlin, R.: Micro–structure in linear elasticity. Archive for Rational Mechanics and Analysis 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  34. Murdoch, A.I.: A thermodynamical theory of elastic material interfaces. The Quarterly Journal of Mechanics and Applied Mathematics 29, 245–275 (1978)

    Article  MathSciNet  Google Scholar 

  35. Peerlings, R., Geers, M.: Borst, R., Brekelmans, W. critical comparison of nonlocal and gradient–enhanced softening continua. International Journal of Solids and Structures 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  36. Rajagopal, A., Fischer, P., Kuhl, E., Steinmann, P.: Natural element analysis of the Cahn-Hilliard phase-field model. Computational Mechanics 46, 471–493 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Steinbach, I., Apel, M.: Multi phase field model for solid state transformation with elastic strain. Physica D 217, 153–160 (2006)

    Article  MATH  Google Scholar 

  38. Ubachs, R., Schreurs, P., Geers, M.: A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. Journal of the Mechanics and Physics of Solids 52, 1763–1792 (2004)

    Article  MATH  Google Scholar 

  39. Ubachs, R., Schreurs, P., Geers, M.: Elasto-viscoplastic nonlocal damage modelling of thermal fatigue in anisotropic lead-free solder. Mechanics of Materials 39, 685–701 (2007)

    Article  Google Scholar 

  40. Wang, Y., Chen, L.Q., Khachaturyan, A.: Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metallurgica et Materialia 41, 279–296 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forest, S., Ammar, K., Appolaire, B. (2011). Micromorphic vs. Phase-Field Approaches for Gradient Viscoplasticity and Phase Transformations. In: Markert, B. (eds) Advances in Extended and Multifield Theories for Continua. Lecture Notes in Applied and Computational Mechanics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22738-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22738-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22737-0

  • Online ISBN: 978-3-642-22738-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics