Skip to main content

Optimal Parametric Iteration Method

  • Chapter
  • First Online:
Nonlinear Dynamical Systems in Engineering
  • 1459 Accesses

Abstract

The most common and most widely studied methods for determining analytical approximate solutions of a nonlinear dynamical system are iteration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.N. Nayfeh, D. Mook, Nonlinear Oscillations. (Wiley, 1979)

    Google Scholar 

  2. B.S. Wu, C.W. Lim, Y.F. Ma, Analytical approximation to large – amplitude oscillation of a nonlinear conservative system. Int. J. Non-linear Mech. 38, 1037–1043 (2003)

    Article  MATH  Google Scholar 

  3. S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  4. V. Marinca, N. Herişanu, D. Bălă, Some optimal approximate methods with application to thin film flow. WSEAS Trans. Syst. 7(9), 744–753 (2010)

    Google Scholar 

  5. R.E. Mickens, A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”. J. Sound Vib. 287, 1045–1051 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.W. Lim, B.S. Wu, A modified procedure for certain non-linear oscillators. J. Sound Vib. 257, 202–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Hu, Solutions of a quadratic nonlinear oscillator: Iteration procedure. J. Sound Vib. 298, 1159–1165 (2006)

    Article  MATH  Google Scholar 

  8. Y.M. Chen, J.K. Liu, A modified Mickens iteration procedure for nonlinear oscillators. J. Sound Vib. 314, 465–473 (2008)

    Article  Google Scholar 

  9. H. Hu, A classical iteration procedure valid for certain strongly nonlinear oscillators. J. Sound Vib. 29, 397–402 (2007)

    Article  Google Scholar 

  10. J.H. He, Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1189 (2006)

    Article  MATH  Google Scholar 

  11. V. Marinca, N. Herişanu, A modified iteration perturbation method for some nonlinear oscillation problems. Acta Mech. 184, 231–242 (2006)

    Article  MATH  Google Scholar 

  12. J.H. He, Variational iteration method – a kind of non-linear analytical technique: Some examples. Int. J. Non-linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  13. N. Herişanu, V. Marinca, An iteration procedure with application to Van der Pol oscillator. Int. J. Nonlin. Sci. Numer. Simul. 10(3), 353–361 (2009)

    Google Scholar 

  14. R.E. Mickens, Perturbation procedure for the Van der Pol oscillator based on Hopf bifurcation theorem. J. Sound Vib. 127, 187–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.H. Chen, Y.K. Cheung, S.L. Lau, On perturbation procedure for limit cycle analysis. Int. J. Non-linear Mech. 26, 237–250 (1993)

    Google Scholar 

  16. E.M.A. Elbashbeshy, M.F. Dimian, Effect of radiation on the flow and heat transfer over a wedge with variable viscosity. Appl. Math. Comput. 132, 445–454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.E.M. Ouaf, Exact solution of thermal radiation on MHD over a stretching porous sheet. Appl. Math. Comput. 170, 1117–1125 (2003)

    Article  MathSciNet  Google Scholar 

  18. V. Marinca, N. Herişanu, An optimal iteration method for a class of strongly nonlinear oscillators. Sci. Bul. Politehnica Univ. Timişoara Trans. Mech. 54(68), 1–8 (2009)

    Google Scholar 

  19. V. Marinca, G. Drăgănescu, Construction of approximate periodic solutions to a modified Van der Pol oscillator. Nonlin. Anal. Real World Appl. 11(5), 4355–4362 (2010)

    Article  MATH  Google Scholar 

  20. M.N. D’Acunto, Determination of the limit cycle for a modified Van der Pol oscillator. Mech. Res. Comm. 33, 93–98 (2000)

    Article  Google Scholar 

  21. F.M. Scudo, Volterra and theoretical ecology. Theor. Popul. Biol. 2, 1–23 (1971)

    Article  MathSciNet  Google Scholar 

  22. R.D. Small, Population Growth in a Closed Model, in Mathematical Modelling. Classroom Notes in Applied Mathematics, ed. by M.S. Klamkin (SIAM, Philadelphia, 1989)

    Google Scholar 

  23. S. Kobayashi, T. Matsukuma, S. Nagai, K. Umeda, Some coefficients of the TFD functions. J. Phys. Soc. Jpn. 10, 759–765 (1955)

    Article  Google Scholar 

  24. S.J. Liao, An explicit analytic solution to the Thomas-Fermi equation. Appl. Math. Comput. 144, 495–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.R. Resiga, G.D. Ciocan, I. Anton, F. Avelan, Analysis of the swirling flow downstream a Francis turbine runner. J. Fluid Eng. 128, 177–189 (2006)

    Article  Google Scholar 

  26. A.J. Lotka, Elements of Physical Biology (William and Wilkins, Baltimore, 1925)

    MATH  Google Scholar 

  27. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conniventi. Mem. R. Acad. Naz. Lincei 2–3, 30–111 (1926)

    Google Scholar 

  28. A. Repaci, Nonlinear dynamical systems: On the accuracy of Adomian decomposition method. Appl. Math. Lett. 3, 35–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Marinca .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marinca, V., Herisanu, N. (2012). Optimal Parametric Iteration Method. In: Nonlinear Dynamical Systems in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22735-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22735-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22734-9

  • Online ISBN: 978-3-642-22735-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics