Advertisement

A Real Time Video Stabilization Algorithm

  • Tarun Kancharla
  • Sanjyot Gindi
Part of the Communications in Computer and Information Science book series (CCIS, volume 193)

Abstract

Jitter or unintentional motion during image capture, poses a critical problem for any image processing application. Video stabilization is a technique used to correct images against unintentional camera motion. We propose a simple and fast video stabilization algorithm that can be used for real time pre-processing of images, which is especially useful in automotive vision applications. Corner and edge based features have been used for the proposed stabilization method. An affine model is used to estimate the motion parameters using these features. A scheme to validate the features and a variant of iterative least squares algorithm to eliminate the outliers is also proposed. The motion parameters obtained are smoothed using a moving average filter, which eliminates the higher frequency jitters obtained due to unintentional motion. The algorithm can be used to correct translational and rotational distortions arising in the video due to jitter.

Keywords

Video Stabilization Corner detection Affine Transform Moving average filter Dolly motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vella, F., Castorina, A., Mancuso, M., Messina, G.: Digital image stabilization by adaptive block motion vector filtering. IEEE Trans. on Consumer Electronics 48(3) (August 2002)Google Scholar
  2. 2.
    Lowe, D.: Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jin, J.S., Zhu, Z., Xu, G.: A Stable Vision System for Moving Vehicles. IEEE Transaction on Intelligent Transportation Systems 1(1), 32–39 (2000)CrossRefGoogle Scholar
  5. 5.
    Ko, S.J., Lee, S.H., Lee, K.H.: Digital image stabilizing algorithms based on bit-plane matching. IEEE Transaction on Consumer Electronics 44(3), 617–622 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Litvin, A., Konrad, J., Karl, W.C.: Probabilistic video stabilization using Kalman filtering and mosaicking. In: Proc. of SPIE Electronic Imaging, vol. 5022, pp. 663–674 (2003)Google Scholar
  7. 7.
    Chang, J., Hu, W., Cheng, M., Chang, B.: Digital image translational and rotational motion stabilization using optical flow technique. IEEE Transactions on Consumer Electronics 48(1), 108–115 (2002)CrossRefGoogle Scholar
  8. 8.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 287–293 (May 2002)Google Scholar
  9. 9.
    Tico, M., Vehvilainen, M.: Robust Method of Videos Stabilization. In: EUSIPCO (September 2007)Google Scholar
  10. 10.
    Chang, H.C., Lai, S.H., Lu, K.R.: A robust and efficient video stabilization algorithm. In: ICME 2004: International Conference on Multimedia and Expo., vol. 1, pp. 29–32, 7, 30, 40, 49, 64. IEEE, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tarun Kancharla
    • 1
  • Sanjyot Gindi
    • 1
  1. 1.CREST, KPIT Cummins Info systems Ltd.PuneIndia

Personalised recommendations