A Robust Framework for Multi-object Tracking

  • Anand Singh Jalal
  • Vrijendra Singh
Part of the Communications in Computer and Information Science book series (CCIS, volume 193)


Tracking multiple objects in a scenario exhibit complex interaction is very challenging. In this work, we propose a framework for multi-object tracking in complex wavelet domain to resolve the challenges occurred due to incidents of occlusion and split. A scheme exploiting the spatial and appearance information is used to detect and correct the occlusion and split state. Experimental results illustrate the effectiveness and robustness of the proposed framework in ambiguous situations in several indoor and outdoor video sequences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mittal, A., Davis, L.: M2tracker: A Multi-view Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision 51(3), 189–203 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Smith, K., Gatica-Perez, D., Odobez, J.-M.: Using Particles to Track Varying Numbers of Interacting People. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  3. 3.
    Nillius, P., Sullivan, J., Carlsson, S.: Multi-target Tracking - Linking Identities using Bayesian Network Inference. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2187–2194 (2006)Google Scholar
  4. 4.
    Han, M., Xu, W., Tao, H., Gong, Y.: Multi-object Trajectory Tracking. Machine Vision and Applications 18(3), 221–232 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Joo, S.W., Chellappa, R.: Multiple-Hypothesis Approach for Multi-object Visual Tracking. IEEE Transactions on Image Processing 16, 2849–2854 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Senior, A., Hampapur, A., Tian, Y.-L., Brown, L., Pankanti, S., Bolle, R.: Appearance Models for Occlusion Handling. Journal of Image and Vision Computing 24(11), 1233–1243 (2006)CrossRefGoogle Scholar
  7. 7.
    Rad, R., Jamzad, M.: Real Time Classification and Tracking of Multiple Vehicles in Highways. Pattern Recognition Letters 26(10), 1597–1607 (2005)CrossRefGoogle Scholar
  8. 8.
    Amer, A.: Voting-based Simultaneous Tracking of Multiple Video Objects. IEEE Transactions on Circuits and Systems for Video Technology 15, 1448–1462 (2005)CrossRefGoogle Scholar
  9. 9.
    Jalal, A.S., Tiwary, U.S.: A Robust Object Tracking Method Using Structural Similarity in Daubechies Complex Wavelet Domain. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 315–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Essa, I.: Tracking Multiple Objects through Occlusions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1051–1058 (2005)Google Scholar
  11. 11.
    Wang, Y., Doherty, J.F., Duck, R.E.V.: Moving Object Tracking in Video. In: Proceedings of 29th IEEE Int’l Conference on Applied Imagery Pattern Recognition Workshop, pp. 95–101 (2000)Google Scholar
  12. 12.
    Lina, J.-M.: Image Processing with Complex Daubechies Wavelets. Journal of Mathematical Imaging and Vision 7(3), 211–223 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ugur, B., Enis, A., Aksay, A., Bilgay, M.A.: Moving object detection in wavelet compressed video. Signal Processing: Image Communication 20, 255–264 (2005)Google Scholar
  14. 14.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–575 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anand Singh Jalal
    • 1
  • Vrijendra Singh
    • 1
  1. 1.Indian Institute of Information TechnologyAllahabadIndia

Personalised recommendations