Advertisement

Undecimated Wavelet Packet for Blind Speech Separation Using Independent Component Analysis

  • Ibrahim Missaoui
  • Zied Lachiri
Part of the Communications in Computer and Information Science book series (CCIS, volume 193)

Abstract

This paper addresses the problem of multi-channel blind speech separation in the instantaneous mixture case. We propose a new blind speech separation system which combines independent component analysis approach and the undecimated wavelet packet decomposition. The idea behind employing undecimated wavelet as a preprocessing step is to improve the non-Gaussianity distribution of independent components which is a pre-requirement for ICA and to increase their independency. The two observed signals are transformed using undecimated wavelet and Shannon entropy criterion into an adequate representation and perform then a preliminary separation. Finally, the separation task is done in time domain. Obtained results show that the proposed method gives a considerable improvement when compared with FastICA and other techniques.

Keywords

Undecimated wavelet packet decomposition independent component analysis blind speech separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1004–1034 (1995)CrossRefGoogle Scholar
  3. 3.
    Cardoso, J.F.: Infomax and maximum likelihood for blind separation. IEEE Signal Processing Letters 4, 112–114 (1997)CrossRefGoogle Scholar
  4. 4.
    Wang, F.S., Li, H.W., Li, R.: Novel NonGaussianity Measure Based BSS Algorithm for Dependent Signals. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 837–844. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Xiao, W., Jingjing, H., Shijiu, J., Antao, X., Weikui, W.: Blind separation of speech signals based on wavelet transform and independent component analysis. Transactions of Tianjin University 16(2), 123–128 (2010)CrossRefGoogle Scholar
  6. 6.
    Hyvärine, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar
  7. 7.
    Fowler, J.: The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters 12(9), 629–632 (2005)CrossRefGoogle Scholar
  8. 8.
    Shensa, M.: The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Trans. Signal Processing 40(10), 2464–2482 (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Tasmaz, H., Ercelebi, E.: Speech enhancement based on undecimated wavelet packet-perceptual filterbanks and MMSE-STSA estimation in various noise environments. Digital Signal Processing 18(5), 797–812 (2008)CrossRefGoogle Scholar
  10. 10.
    Cardoso, J.F.: Higher-order contrasts for independent component analysis. Neural Computation 11, 157–192 (1999)CrossRefGoogle Scholar
  11. 11.
    Vincent, E., Gribonval, R., Fevotte, C.: Performance Measurement in Blind Audio Source Separation. IEEE Transactions on Audio, Speech, and Language Processing 14(4), 1462–1469 (2006)CrossRefGoogle Scholar
  12. 12.
    Chien, J.T., Chen, B.C.: A New Independent Component Analysis for Speech Recognition and Separation. IEEE Transactions on Audio, Speech and Language Processing 14(4), 1245–1254 (2006)Google Scholar
  13. 13.
    Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)CrossRefGoogle Scholar
  14. 14.
    Gargour, C., Abrea, M., Ramachandran, V., Lina, J.M.: A short introduction to wavelets and their applications. IEEE Circuits and Systems Magazine 9(2), 57–58 (2009)CrossRefGoogle Scholar
  15. 15.
    Coifman, R., Wickerhausser, M.: Entropy-based algorithms for best-basis selection. IEEE Transactions on Information Theory 38, 713–718 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    ITU-T P.862, Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. International Telecommunication Union, Geneva (2001)Google Scholar
  17. 17.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Wang, L., Brown, G.J.: Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Wiley/IEEE Press, Hoboken, NJ (2006)CrossRefGoogle Scholar
  19. 19.
    Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)Google Scholar
  20. 20.
    Cichocki, A., Amari, S.: Adaptive Blind Signal and Adaptive Blind Signal and Image Processing. John Wiley and Sons, New York (2002)CrossRefGoogle Scholar
  21. 21.
    Mallat: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, London (2008)zbMATHGoogle Scholar
  22. 22.
    Moussaoui, R., Rouat, J., Lefebvre, R.: Wavelet Based Independent Component Analysis for Multi-Channel Source Separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 645–648 (2006)Google Scholar
  23. 23.
    Usman, K., Juzoji, H., Nakajima, I., Sadiq, M.A.: A study of increasing the speed of the independent component analysis (lCA) using wavelet technique. In: Proc. International Workshop on Enterprise Networking and Computing in Healthcare Industry, pp. 73–75 (2004)Google Scholar
  24. 24.
    Tanaka, T., Cichocki, A.: Subband decomposition independent component analysis and new performance criteria. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 541–544 (2004)Google Scholar
  25. 25.
    Mirarab, M.R., Sobhani, M.A., Nasiri, A.A.: A New Wavelet Based Blind Audio Source Separation Using Kurtosis. In: International Conference on Advanced Computer Theory and Engineering (2010)Google Scholar
  26. 26.
    Walden, A.T., Contreras, C.: The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events. Proceedings of the Royal Society of London, 2243–2266 (1998)Google Scholar
  27. 27.
    Chien, J.T., Hsieh, H.L., Furui, S.: A new mutual information measure for independent component alalysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1817–1820 (2008)Google Scholar
  28. 28.
    Fisher, W., Dodington, G., Goudie-Marshall, K.: The TIMIT-DARPA speech recognition research database: Specification and status. In: DARPA Workshop on Speech Recognition (1986)Google Scholar
  29. 29.
    Zhang, W., Rao, B.D.: Combining Independent Component Analysis with Geometric Information and its Application to Speech Processing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2009)Google Scholar
  30. 30.
    Fevotte, C., Gribonval, R., Vincent, E.: BSS EVAL toolbox user guide, IRISA, Rennes, France, Technical Report 1706 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ibrahim Missaoui
    • 1
  • Zied Lachiri
    • 1
    • 2
  1. 1.National School of Engineers of TunisTunisTunisia
  2. 2.National Institute of Applied Science and Technology INSATTunisTunisia

Personalised recommendations