Advertisement

Tumor Detection in Brain Magnetic Resonance Images Using Modified Thresholding Techniques

  • C. L. Biji
  • D. Selvathi
  • Asha Panicker
Part of the Communications in Computer and Information Science book series (CCIS, volume 193)

Abstract

Automated computerized image segmentation is very important for clinical research and diagnosis. The paper deals with two segmentation schemes namely Modified Fuzzy thresholding and Modified minimum error thresholding. The method includes the extraction of tumor along with suspected tumorized region which is followed by the morphological operation to remove the unwanted tissues. The performance measure of various segmentation schemes are comparatively analyzed based on segmentation efficiency and correspondence ratio. The automated method for segmentation of brain tumor tissue provides comparable accuracy to those of manual segmentation.

Keywords

Segmentation Magnetic resonance Imaging Thresholding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Macovski, A., Meyer, C.H., Noll, D.C., Nishimura, D.G., Pauly, J.M.: A homogeneity correction method for magnetic resonance imaging with time-varying gradients. IEEE Trans. Med. Imaging 10(4), 629–637 (1991)CrossRefGoogle Scholar
  2. 2.
    Clark, M.C., Goldgof, D.B., Hall, L.O., Murtagh, F.R., Sibiger, M.S., Velthuizen, R.: Automated tumor segmentation using knowledge based technique. IEEE Trans. on Medical Imaging 17(2), 238–251 (1998)CrossRefGoogle Scholar
  3. 3.
    Lenvine, M., Shaheen, S.: A modular computer vision system for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 3(5), 540–557 (1981)CrossRefGoogle Scholar
  4. 4.
    Kichenassamy, S., Kumar, A., Oliver, P.J., Tannenbaum, A., Yezzi, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. on Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  5. 5.
    Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of Thresholding Techniques. Computer Vision, Graphics, and Image Processing 41, 233–260 (1988)CrossRefGoogle Scholar
  6. 6.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Education, London (2002)Google Scholar
  7. 7.
    Illingworth, J., Kittler, J.: Threshold Selection based on a simple image statistic. Computer Vision, Graphics, and Image Processing 30, 125-147 (1985)Google Scholar
  8. 8.
    Yan, H., Zhu, Y.: Computerized Tumor Boundary Detection Using a Hopfield Neural Network. IEEE Transactions on Medical Imaging 16(1) (1997)Google Scholar
  9. 9.
    Gauthier, D., Wu, K., Levine, M.D.: Live Cell Image Segmentation. IEEE Transactions on Biomedical Engineering 42(1) (January 1995)Google Scholar
  10. 10.
    Calvard, S., Ridler, T.: Picture thresholding using an iterative selection method. IEEE Trans. Systems Man Cybernet. SMC-8, 630–632 (November 1978)Google Scholar
  11. 11.
    Biswas, P.K., Jawahar, C.V., Ray, A.K.: Investigations on Fuzzy thresholding Based on Fuzzy Clustering. Pattern Recognition 30(10), 1605–1613 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ostu, N.: A threshold selection method from gray level histogram. IEEE Trans. System Man Cybernet. SMC-8, 62–66 (1978)Google Scholar
  13. 13.
    Kapur’s, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of histograms. Computer Vision Graphics Image Process. 29, 273–285 (1985)CrossRefGoogle Scholar
  14. 14.
    Illingworth, J., Kittler: Minimum Error thresholding. Pattern Recognition, 19(1), 41–47 (1985)Google Scholar
  15. 15.
    Danielsson, P.E., Ye, Q.Z.: On minimum error thresholding and its implementations. Pattern Recognition Letters 7, 201–206 (1988)CrossRefGoogle Scholar
  16. 16.
    Cheng, H.-D., Freimanis, R.I., Lui, Y.M.: A novel Approach to Micro calcification Detection Using Fuzzy Logic Technique. IEEE Transactions on Medical Imaging 17(3), 442–450 (1998)CrossRefGoogle Scholar
  17. 17.
    Mendelsohn, M.L., Prewitt, J.M.S.: The analysis of cell images. Ann. N. Y. Acad. Sci. 128, 1035–1053 (1966)Google Scholar
  18. 18.
    Goldgof, D.B., Hall, L.O., Fletcher-Heath, L.M., Murtagh, F.R.: Automatic Segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine 21, 43–63 (2001)Google Scholar
  19. 19.
    Middleton, I., Damper, R.I.: Segmentation of MR Images Using a Combination of Neural networks and active contour models. Medical Engineering & Physics 26, 71–76 (2004)CrossRefGoogle Scholar
  20. 20.
    Pradhan, N., Sinha, A.K.: Development of a composite feature vector for the detection of pathological and healthy tissues in FLAIR MR images of brain. ICGST-BIME Journal 10(1) (December 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. L. Biji
    • 1
  • D. Selvathi
    • 2
  • Asha Panicker
    • 1
  1. 1.ECE DeptRajagiri School of Engineering & TechnologyKochiIndia
  2. 2.ECE DeptMepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations