Skip to main content

Wavelet Selection for EMG Based Grasp Recognition through CWT

  • Conference paper
Book cover Advances in Computing and Communications (ACC 2011)

Abstract

This paper details a strategy of discriminating grasp types using surface electromyogram (EMG) signals, which has the potential to be applied for controlling advanced prosthesis for extreme upper limb amputees. We have investigated the classification of six basic grasp types used during 70% of daily living activities. The feature vector for EMG based grasp recognition was derived using continuous wavelet transform (CWT). The proper wavelet basis function was selected through computation of entropy of the preprocessed EMG signals and wavelet transform coefficients of six different wavelet families: Gaussian, Daubechies, Morlet, Mayer, Mexicanhat and Symlet. Based on this, Gaussian wavelet function has been concluded to be possessing maximum informations about grasp types. Experimental results have validated our hypothesis that the CWT coefficients having entropy values close to the entropy of preprocessed EMG signals possesses maximum informations about the grasp types. Classification was through one vs. all multi-class support vector machine with linear kernel following preprocessing and maximum voluntary contraction normalization of EMG signals. We have achieved an average recognition rate of 80% (using the Gaussian wavelet function) cross validated through 10-fold cross validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Nashash, H.A., Paul, J.S., Thakor, N.V.: Wavelet entropy method for EEG analysis:Application to global brain injury. In: 1st International IEEE EMBS Conferenceon Neural Engineering, pp. 348–351. IEEE, Los Alamitos (2003)

    Google Scholar 

  2. Lee, K.W., He, T., Ilhan, H.T., Linscott, I., Olgin, J.E.: Feature extraction of the atrial fibrillation signal using the continuous wavelet transform. In: Proceedings of 26th EMB, pp. 275–278. IEEE, Los Alamitos (2004)

    Google Scholar 

  3. Bitar, A.F., Madi, N., Ramly, E., Saghir, M., Karameh, F.: A portable midi controller using EMG-based individual finger motion classification. In: Proceedings of the BIOCAS, pp. 138–141. IEEE, Los Alamitos (2007)

    Google Scholar 

  4. Bitzer, S., Smagt, P.: Grasp recognition from myoelectric signals. In: Proceedings of Australian Conference on Robotics and Automation, pp. 82–84 (2002)

    Google Scholar 

  5. Ferguson, S., Dunlop, G.R.: Learning EMG control of a robotics hand:towards active prostheses. In: Proceedings of Robotics and Automation, pp. 2819–2823. IEEE, Los Alamitos (2003)

    Google Scholar 

  6. Hiraiwa, A., Shimohara, K., Tokunaga, Y.: EMG pattern analysis and classification by neural network. In: Proceedings of International Conferenceon Systems,Man and Cybernatics, pp. 711–719. IEEE, Los Alamitos (1989)

    Google Scholar 

  7. Jiang, M., Wang, J.J.D., Wang, R.C.: A method of recognizing finger motion using wavelet transform of surface EMG signal. In: Proceedings of EMB, pp. 2672–2674. IEEE, Los Alamitos (2005)

    Google Scholar 

  8. Zajdlik, J.: The preliminary design and motion control of a five-fingered prosthetic hand. In: Proceedings ofthe INES, pp. 202–206. IEEE, Los Alamitos (2006)

    Google Scholar 

  9. Cha, K., Yu, K., Shin, H.: Maximum likelihood method for finger motion recognition from sEMG signals. In: Proceeding of ICBME, pp. 452–455. Springer, Heidelberg (2009)

    Google Scholar 

  10. Wheeler, K.R., Field, M.: Device control using gesture sensed from EMG. In: Proceedings of International Workshop on Soft Computing in Industrial Applications, pp. 21–26. IEEE, Los Alamitos (2003)

    Google Scholar 

  11. Vecchi, F., Micera, S., Carrozza, M.C., Sabatini, A.M., Dario, P.: A sensorized glove for applications in biomechatronics and motor control. In: 6thIFESS Conference (2003)

    Google Scholar 

  12. Nishikawa, D., Yokoi, W., Yu, H., Kakazu, Y.: EMG prosthetic hand controller using real-time learning method. In: Proceedings of Intl.Conf.on Systems Man and Cybernatics. IEEE, Los Alamitos (1999)

    Google Scholar 

  13. Moshou, I., Hostens, D., Papaioannou, H.: Wavelets and self-organising maps in electromyogram(EMG)analysis. In: Proceedings of ESIT, pp. 186–189 (2002)

    Google Scholar 

  14. Massa, B., Roccella, S., Carrozza, M.C., Dario, P.: Design and development of an underactuated prosthetic hand. In: Proceedings of Intl.Conf.on Robotics and Auto. IEEE, Los Alamitos (2002)

    Google Scholar 

  15. Vuskovic, M.I., Pozos, A.L., Pozos, R.: Classification of Grasp Modes Based on Electromyographic Patterns of Preshaping Motions. In: Proceedings of Intl.Conf.on on Systems, Man and Cybedrnetics. IEEE, Los Alamitos (1995)

    Google Scholar 

  16. Santiago, F.T., Kenemans, J.L., Kok, A.: A comparison of different methods for estimating single-trial P300 latencies. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 92(2), 107–114 (1994)

    Article  Google Scholar 

  17. Reaz, M.B.I., Hussain, M.S.: A non-MVC EMG normalization technique for the trunk musculature: Part l method development. Journal of Electromyography and Kinesiologt 11(1), 1–9 (2001)

    Article  Google Scholar 

  18. Karlsson, S., Gerdle, B.: Mean frequency and signal amplitude of the surface EMG of the quadricps muscles increase with increasing torque a studyusing continuous wavelet transform. Journal of Electromyography and Kinesiology 11, 131–140 (2001)

    Article  Google Scholar 

  19. Eom, K.H., Choi, Y.J., Sirisena, H.: EMG pattern classification using sofms for hand signal recognition. Journal of Soft Computing 6(6), 436–440 (2002)

    Article  MATH  Google Scholar 

  20. Englehart, K., Hudgin, B., Parker, P.: A wavelet-based continuous classification scheme for multi-function myoelectric control. IEEE Trans.on Biomedical Engineering 48(3), 302–311 (2001)

    Article  Google Scholar 

  21. Cutkosky, M.R.: A on grasp choice,grasp models and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation 5(3), 269–278 (1989)

    Article  MathSciNet  Google Scholar 

  22. Chan, F.H.Y., Yang, Y.S., Lam, F.K., Zhang, Y.T., Parker, P.: Fuzzy EMG classification for prosthesis control. IEEE Transactions on Rehab.Engg. 8(3), 305–311 (2000)

    Article  Google Scholar 

  23. Castellini, C., van der Smagt, P.: Surface EMG in advanced hand prosthetics. Biological Cybernetics 100(1), 35–47 (2009)

    Article  Google Scholar 

  24. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discov. 2(2), 121–168 (1998)

    Article  Google Scholar 

  25. Bostannov, V.: BCI competition 2003-datasets ib and iib:feature extraction from event related brain potentials with the continues wavelet transform and t-value scalogram. IEEE Transactions on Biomedical Engineering 51(6), 1057–1061 (2004)

    Article  Google Scholar 

  26. MacKenzie, C., Iberall, T.: The Grasping Hand. North-Holland, Amesterdam (1994)

    Google Scholar 

  27. Crawford, B., Miller, K., Shenoy, P., Rao, R.: Real-time classification of electro myographic signals for robotic control, Technical Report, Dept. of Computer Science,University of Washington (March 05, 2005)

    Google Scholar 

  28. Kakoty, N.K., Hazarika, S.M.: Classification of Grasp Types through Wavelet Decomposition of EMG Signals. In: Proceedings of the 2nd International Conference on BioMedical Engineering and Informatics. IEEE, Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saikia, A., Kakoty, N.M., Hazarika, S.M. (2011). Wavelet Selection for EMG Based Grasp Recognition through CWT. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22714-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22714-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22713-4

  • Online ISBN: 978-3-642-22714-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics