Estimates for the Upper and Lower Bounds on the Inverse Elements of Strictly Diagonally Dominant Periodic Adding Element Tridiagonal Matrices in Signal Processing

  • Wenling Zhao
Part of the Communications in Computer and Information Science book series (CCIS, volume 137)


Strictly diagonally dominant periodic adding element tridiagonal matrices play a very important role in the theory and practical applications. In this paper, Motivated by the references, especially [2], we give the estimates for the upper bounds on the inverse elements of strictly diagonally dominant periodic adding element tridiagonal matrices.


strictly diagonally dominant Adding Element Tridiagonal Matrices inverse matrix Signal Processing upper bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhu, H.: The Criteria Of Specific Shape Invers M– Matrices, Xiangtan University Master’s Thesis (2007) Google Scholar
  2. 2.
    Yuan, Z.-j.: The Research on the Computing Problems and the Properties about Special Matrices, Northwestern Polytechnical University Master’s Thesis (2005)Google Scholar
  3. 3.
    Chen, J., Chen, X.: Special Matrix. Tsinghua University Press, Beijing (2001)Google Scholar
  4. 4.
    Xu, Z.: Upper Bounds for Inverse Elements of Strictly Diagonally Dominant Periodic Tridiagonal Matrices. Chinese Journal of Engineering Mathematics 21, 67–72 (2004)Google Scholar
  5. 5.
    Peluso, R., Politi, T.: Some improvements for two-sided bounds on the inverse of diagonally dominant tridiagonal matrices. Linear. Algebr. Appl. 330, 1–14 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, X., Huang, T., Fu, Y.-D.: Estimates for the inverse elements of tridiagonal matrices. Applied Mathematics Letters 194, 590–598 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kershaw, D.: Inequalities on the elements of the inverse of a certain tridiagonal matrix. Math. Comput. 24, 155–158 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nabben, R.: Two-sided bounds on the inverse of diagonally dominant tridiagonal matrices. Linear Algebr. Appl. 287, 289–305 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yang, C.-s., Yang, S.-j.: Closure Properties of Inverse M-matrices under Hadamard Product. Journal of Anhui University(Natural Sciences) 4, 15–20 (2000)Google Scholar
  10. 10.
    Xiu, Z., Zhang, K., Lu, Q.: Fast algorithm for Toeplitz matrix. Northwestern Polytechnical University Press (1999)Google Scholar
  11. 11.
    Lou, X.-y., Cui, B.-t.: Exponential dissipativity of Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms 4, 619–922 (2008)Google Scholar
  12. 12.
    Guo, X.-j., Ji, N.-h., Yao, H.-p.: The Judgement and Parallel Algorithm for Inverse M-matrixes. Journal of Beihua University 45, 97–103 (2004)Google Scholar
  13. 13.
    Yang, z.-y., Fu, Y.-d., Huang, T.-z.: Some Properties of InverseM-Matrices and Their Applications. Joumal of UEST of China 34, 713–716 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Han, Y.: The Property and Judgment of Inverse M-Matrixes. Journal of Huzhou Teachers College 30, 10–12 (2008)Google Scholar
  15. 15.
    You, Z.: Nonsingular M-matrix. Huazhong University of Science and Technology Publishing House, Wuhan (1983)Google Scholar
  16. 16.
    Zhaolin, J.: Non singularity on scaled factor circulant matrices. Journal of Baoji College of Arts and Science (Natural Science) 23, 5–7 (2003)zbMATHGoogle Scholar
  17. 17.
    Li, H., Liu, X., Zhao, W.: Nonsingularity on Scaled Factor Circulant Matrices. International Journal of Algebra 2(18), 889–893 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zhaolin, J.: Non singularity on r-circulant matrices. Mathematics in Practice and Theory 2, 52–58 (1995)Google Scholar
  19. 19.
    Deng, Y.: Problem of Cyclic Matrix Inversion. Journal of Hengyang Normal University 3, 31–33 (1995)Google Scholar
  20. 20.
    Jiang, J.: Two Simple Methods of Finding Inverse Matrix of Cyclic Matrix. Journal of Jiangxi Institute of Education(Comprehensive) 3, 5–6 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wenling Zhao
    • 1
  1. 1.College of Science ShandongUniversity of TechnologyShandongPeople’s Republic of China

Personalised recommendations