Skip to main content

Numerical Computation of Melting Efficiency of Aluminum Alloy 5083 During CO2 Laser Welding Process

  • Chapter
  • First Online:
  • 2026 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 16))

Abstract

This chapter is aimed at determining the melting efficiency of aluminum alloy 5083 during CO2 laser welding process. Theoretical models were used for the melting efficiency determination as proposed by other investigators which also included an examination of the fluid flow pattern of the alloy. The results obtained indicate that the acceptable melting efficiency calculated was 38%. This value compares well with and falls within the range of other values reported in other literature. The theory of metal melting as it relates to laser welding depends on the thermal state of the material under investigation. Applying high laser power under a controlled environment would achieve deeper penetration with fewer heat affected zones; therefore a deep understanding of the chemo-physical properties of a metal is required to determine its melting efficiency and these properties have been adequately treated in this study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Okon, P., Dearden, G., Watkins, K., et al.: Laser welding of aluminium alloy 5083, In: 2nd ICALEO, Scottsdale, 14–17 October 2002

    Google Scholar 

  2. Weston, J.: Laser welding of aluminum alloys. Ph.D. thesis, Department of Material Science and Metallic Engineering, University of Cambridge (1999)

    Google Scholar 

  3. TALAT Lecture 4300: Beam welding processes of aluminium. EAA, www.aa.net/eaa/education/TALAT/Lectures/4300.pdf (1994)

  4. Olander, D.R.: Laser-pulse vaporization of refractory materials. Pure Appl. Chem. 62(1), 123–138 (1990)

    Article  Google Scholar 

  5. Yeh, R.-H., Liaw, S.-P., Yu, H.-B.: Thermal analysis of welding on aluminum plates. J. Marine Sci. Tech. 2(4), 213–220 (2003)

    Google Scholar 

  6. Mahfoud, M., Mucciardi, F., Gruzleski, J.E.: Detection of solidification reactions in aluminum alloys using heat pipe technology. AFS Trans. 105(25), 473–480 (1997)

    Google Scholar 

  7. David, S.A., DebRoy, T.: Current issues and problems in welding science. Science 257, 497–502 (1992)

    Article  Google Scholar 

  8. Zhao, H., Debroy, T.: Weld metal composition change during conduction mode laser welding of aluminium alloy 5182. Met. Mater. Trans. B 32B, 163–172 (2001)

    Article  Google Scholar 

  9. Cieslak, M.J., Fuerschbach, P.W.: On the weldability, composition, hardness of pulsed, continuous Nd:YAG laser welds in aluminum alloys 6061, 5456 and 5086. Metall. Trans. 19B(4), 319–329 (1988)

    Google Scholar 

  10. Hatch, J.E.: Aluminum: Properties and Physical Metallurgy. The American Society for Metals, Metals Park (1984)

    Google Scholar 

  11. Allen, C.M.: Laser welding of aluminium alloys—principles and applications, TWI Report No. 795/2004. The Welding Institute (2004)

    Google Scholar 

  12. Buschenhenke, F., Seefeld, T., Schulz, A., et al.: Hot cracking during welding of aluminium alloys using spray formed filler wire with high silicon content. In: Proceedings of 4th International WLT Conference, Lasers in Manufacturing, LIM2007. Munich, pp. 25–29 (2007)

    Google Scholar 

  13. Verhaeghe, G., Allen, C., Hilton, P.: Achieving low-porosity laser welds in 12.7 mm thickness aerospace aluminum using a Yb-Fiber laser. In: Proceedings of 4th International WLT-Conference, Lasers in Manufacturing Limited 2007, pp. 17–24, Munich (2007)

    Google Scholar 

  14. Fuerschbach, P.W.: Measurement and prediction of energy transfer efficiency in laser beam welding. Weld. J. 75(1), 24s (1996)

    Google Scholar 

  15. Trautmann, A.: Bifocal Hybrid Laser Welding: A Technology for Welding of Aluminium and Zinc-Coated Steels. Herbert Utz Verlag GmbH, Mϋnchen (2009)

    Google Scholar 

  16. Zhao, H., White, D.R., DebRoy, T.: Current issues and problems in laser welding of automotive aluminum alloys. Int. Mater. Rev. 44(6), 238–266 (1999)

    Article  Google Scholar 

  17. Al-Kazzaz, H., Medraj, M., Cao, X., et al.: Nd: YAG laser welding of aerospace grade ZE4IA magnesium alloy: modeling and experimental investigations. Mater. Chem. Phys. 109, 61–76 (2008)

    Article  Google Scholar 

  18. Haferkamp, H., Von Alvensleben, F., Burmester, J., et al.: The characteristics of laser beam welded magnesium alloys. In: Proceedings of the Laser Material Processing Conference ICALEO’97, pp. G/140–G/149 (1997)

    Google Scholar 

  19. Duley, W.W.: Laser Welding. Wiley, New York (1998)

    Google Scholar 

  20. Tsirkas, S.A., Papanikos, P., Kormanidis, Th.: Numerical simulation of the laser welding process in butt-joint specimens. J. Mater. Process. Technol. 134, 59–69 (2003)

    Article  Google Scholar 

  21. Duley, W.W.: Laser Processing and Analysis of Materials, p. 71. Plenum Press, New York (1983)

    Book  Google Scholar 

  22. Mouroulis, P., Macdonald, J.: Gaussian Optics. In: Geometrical Optics and Optical Design. Oxford University Press, New York (1997)

    Google Scholar 

  23. Howard, K., Lawson, S., Zhou, Y.: Welding aluminum sheet using a high power diode laser. Weld. J. 5, 101s–110s (2006)

    Google Scholar 

  24. Punkari, A., Weckman, D.C., Kerr, H.W.: Effects of magnesium content on dual beam Nd:YAG laser welding of Al-Mg alloys. J. Sci. Tech. Weld. Join 8(4), 269–281 (2003)

    Article  Google Scholar 

  25. Dausinger, F., Rapp, J., Beck, M., et al.: Welding of aluminum: a challenging opportunity for laser technology. J. Laser Appl. 8(6), 285–290 (1996)

    Article  Google Scholar 

  26. Leong, K.H., Sabo, K.R., Albright, C.E.: Laser beam welding of 5182 aluminum alloy sheet. J. Laser Appl. 11(3), 109–118 (1999)

    Article  Google Scholar 

  27. Leong, K.H., Sabo, K.R., Sanders, P.G., et al.: Laser welding of aluminium alloys. Proc. SPIE 2993, 37 (1997)

    Article  Google Scholar 

  28. Von Allmen, M.: Laser Beam Interactions with Materials. Springer, Bern, Table A.1 (1987)

    Google Scholar 

  29. Grong, Ө.: Metallurgical modeling of welding. Materials Modeling Series. In: Bhadeshia, H.K.D.H. (ed.) The Institute of Materials (1994)

    Google Scholar 

  30. Bramson, M.A.: Infrared Radiation: A Handbook for Applications. Plenum Press, New York (1968)

    Book  Google Scholar 

  31. Keplan, A.: A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D. 27, 1805–1814 (1994)

    Article  Google Scholar 

  32. Lampa, C., Kaplan, A.F.H., Powell, J., et al.: An analytical thermodynamic model of laser welding. J. Phys. D Appl. Phys. 30(9), 1293–1299 (1997)

    Article  Google Scholar 

  33. Swift-Hook, D.T., Gick, A.E.F.: Penetration welding with lasers. Weld. J. 52, 492s–499s (1973)

    Google Scholar 

  34. Kwon, Y., Weckman, D.C.: Double sided arc welding of AA5182 aluminium alloy sheet. Sci. Tech. weld. Join 13(6), 485–495 (2008)

    Article  Google Scholar 

  35. ASM Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, vol. 2(95), 10th edn. ASM International, Materials Park, (1990)

    Google Scholar 

  36. Fuerschbach, P.W., Knorovsky, G.A.: A study of melting efficiency in plasma arc and gas tungsten arc welding. Weld. J. 70(11), 287s–297s (1991)

    Google Scholar 

  37. Punkari, A.: Variable polarity plasma arc welding and dual beam Nd: YAG laser welding of aluminum alloys. Master’s dissertation, University of Waterloo, Waterloo (2002)

    Google Scholar 

  38. Deutsch, M.: Effects of Nd: YAG laser welding and VPPAW welding process variables on weld metal, geometry and defects of 1.6 mm thick 5182 aluminum. Master’s dissertation. University of Waterloo, Waterloo (2002)

    Google Scholar 

  39. Quintino, I., Costa, A., Miranda, R., et al.: Welding with high power fiber lasers-a preliminary study. Mater. Design 28(4), 1231–1237 (2007)

    Article  Google Scholar 

  40. Ready, J.F.: LIA Handbook of Laser Material Processing. Published by the Laser Institute of America (2001)

    Google Scholar 

  41. Paleocrassas, A.G., Tu, J.F.: Low speed laser welding of aluminum alloy 7075–T6 using a 300 W, single mode, ytterbium fiber laser. Weld. J. 86, 181s–182s (2007)

    Google Scholar 

  42. Padmanobham, G., Schaper, M., Pandey, S., et al.: Tensile and fracture behaviour of pulsed gas metal arc welded Al-Cu-Li. Weld. J. 86(6), 149 (2007)

    Google Scholar 

  43. De Genes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. Part 1 53(3), 827–863 (1985)

    Article  Google Scholar 

  44. Smithells, C.J., Brandes, E.A. (eds.) Metals Reference Book, 5th edn, p. 944. Butterworths, Boston (1976)

    Google Scholar 

  45. Kroos, J., Gratzke, U., Simon, G.: Towards a self consistent model of the keyhole in laser beam welding. J. Phys. D. 26, 474–480 (1993)

    Article  Google Scholar 

  46. Arata, Y.: Plasma, Electron and Laser Beam Technology. The American Society for Metals, Metals Park (1986)

    Google Scholar 

  47. Ducharme, R., Williams, K., Kapadia, P., et al.: The laser welding of thin metal sheets: an integrated keyhole and weldpool model with supporting experiments. J. Phys. D Appl. Phys. 27(8), 1619–1627 (1994)

    Article  Google Scholar 

  48. Heiple, C.R., Burgardt, P.: Fluid flow phenomena during welding. ASM Handbook. Welding, Brazing and Soldering, vol. 6, pp. 19–24. ASM Internetional, Materials Park (1993)

    Google Scholar 

  49. Beckmanns, J., Danzer, W., Hartl, J.: Influence of process gases in welding with diode laser. In: Yao, Y.L. (ed.) Proceedings of ICALEO2002; Laser Institute of America, Orlando, pp. 1413–1422 (2002)

    Google Scholar 

  50. Fujii, H., Sumi, Y., Yamamoto, T., et al.: Effect of gravity and surface tension on convection in molten pool. Trans. JWRI Special Issue HTC 2000(30), 523–528 (2001)

    Google Scholar 

  51. Goumiri, L., Joud, J.C., Hicter, J.M.: Surface tension of binary Al alloys. Surf. Sci. 83, 471 (1979)

    Article  Google Scholar 

  52. Paul, A.J., Debroy, T.: Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 19B, 851–858 (1988)

    Article  Google Scholar 

  53. Sahoo, P., DebRoy, T.: Interfacial tension between low pressure argon plasma and molten copper and iron. Metall. Trans. B 18B, 597–601 (1987)

    Article  Google Scholar 

  54. Sun, J., Wu, C.: The effect of welding heat input on the weldpool behavior in MIG welding science in china. Series E. 45(3), 291–299 (2002)

    Article  Google Scholar 

  55. Tang, H., Wrobel, L.C., Fan, Z.: Hydrodynamic analysis of binary immiscible metallurgical flow in a novel mixing process: rheomixing. Appl. Phys. A 81A, 549–559 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Ifeanyichukwu Achebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achebo, J.I., Oghoore, O. (2012). Numerical Computation of Melting Efficiency of Aluminum Alloy 5083 During CO2 Laser Welding Process. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_37

Download citation

Publish with us

Policies and ethics