Skip to main content

Hamiltonian Formalisms Applied to Continuum Mechanics: Potential Use for Fracture Mechanics

  • Chapter
  • First Online:
Materials with Complex Behaviour II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 16))

Abstract

The first part of this chapter deals with several Hamiltonian formalisms in elasticity. The formalisms of Zhong ((1995) Dalian Science & Technology University Press, Liaoning, China) and Bui ((1993) Introduction aux problèmes inverses en mécaniques des matériaux, Editions Eyrolles, Paris), which resolve respectively the two-end problem and the Cauchy problem in elasticity, are presented briefly. Then we propose a new Hamiltonian formalism, which resolves simultaneously the two problems mentioned above and shows the link between the two formalisms. The potential use for fracture mechanics purposes is then mentioned. In fact, when traditional theories in fracture mechanics are used, asymptotic analyses are often carried out by using high-order differential equations governing the stress field near the crack tip. The solution of the high-order differential equations becomes difficult when one deals with anisotropic or multilayer media etc. The key of our idea was to introduce the Hamiltonian system, usually studied in rational mechanics, into continuum mechanics. By this way, one can obtain a system of first-order differential equations, instead of the high-order differential equation. This method is very efficient and quite simple to obtain a solution of the governing equations of this class of problems. It allows dealing with a large range of problems, which may be difficult to resolve by using traditional methods. Also, recently we developed another new way to resolve fracture mechanics problems with the use of ordinary differential equations (ODEs) with respect to the circumferential coordinate θ around the crack (or notch) tip. This method presents the opportunity to be coupled with finite element analysis and then allows resolving more complicated geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bui, H. D.: Introduction aux problèmes inverses en mécaniques des matériaux, Editions Eyrolles (1993)

    Google Scholar 

  2. Zhong, W. X.: A New Systematically Methodology in Elasticity Theory, Dalian Science & Technology University Press, Liaoning, China (1995)

    Google Scholar 

  3. Li, J., Recho, N.: Hamiltonian formalisms in elasticity—potential use for fracture mechanics. In: 11th International Conference on Fracture (ICF 11), mars , Turin (Italie)(2005)

    Google Scholar 

  4. Li J., Recho N.: Méthodes asymptotiques en mécanique de la rupture, Editions Hermes Science, ISBN: 2-7462-0366-9 (2002)

    Google Scholar 

  5. Li, J., Zhang, X.B., Recho, N.: Stress singularities near the tip of a two-dimensional notch forded from several anisotropic materials. Int. J. Fract. 107, 379–395 (2001)

    Article  Google Scholar 

  6. Niu, Z.R., Cheng, C., Ye, J., Recho, N.: A new boundary element approach of modeling singular stress fields of plane V-notch porblems. Int. J. Solids Struct. 46(16), 2999–3008 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yosibash, Z., Szabó, B.A.: A note on numerically computed eigenfunctions and generalized stress intensity factors associated with singular points. Eng. Frac. Mech. 54, 593–595 (1996)

    Article  Google Scholar 

  8. Niu, Z.R., Ge, D., Cheng, C.Z., Ye, J., Recho, N.: Evaluation of the stress singularity degrees of plane V-notches in bonded dissimilar materials. J. Appl. Math. Model. 33(3), 1776–1792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogy, D.B.: Two edge-bonded elastic wedges of different materials and angles under surface traction. J. Appl. Mech. 38(2), 377–386 (1971)

    Article  Google Scholar 

  10. Jian, Z., Huang, S.H., Hu, L.M.: Computation of stress factors for biomaterial V-notch and heel of concrete dam on rock foundation. Chin. J. Hydraul. Eng. 6, 77–81 (1998) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Recho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Recho, N. (2012). Hamiltonian Formalisms Applied to Continuum Mechanics: Potential Use for Fracture Mechanics. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_2

Download citation

Publish with us

Policies and ethics