Skip to main content

Numerical Investigation of Chatter in Cold Rolling Mills

  • Chapter
  • First Online:
Materials with Complex Behaviour II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 16))

Abstract

In this work, considering a four high cold rolling mill and using a dynamic friction model, expressions for the variation of pressure in the roll bite have been developed. The effects of parameters used in the dynamic friction model on the variation of pressure and shear stress are investigated. The numerically obtained horizontal and vertical work roll deflections using the dynamic friction model have been compared with those obtained by the conventionally used constant friction model. The effects of rolling parameters like strip thickness; periodic back tension and strip velocity on the work roll deflections have been studied. This work will find applications in predicting the critical system parameters in cold rolling to avoid chatter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

M :

Mass per unit length of the work roll (kg/m)

y:

Vertical displacement of the work roll (m)

\( f^{s} \) :

Reaction force from metal sheet (N/m)

\( D_{w} \) :

Diameter of work roll (m)

\( D_{b} \) :

Diameter of backup roll (m)

E :

Young’s modulus of the material (GPa)

\( {{\upmu}} \) :

Poisson’s ratio of the material

\( f_{s}^{s} \) :

Steady sheet force (N/m)

\( f_{d}^{s} \) :

Dynamic sheet force (N/m)

\( y_{s} \) :

Work roll displacement due to the steady sheet force (m)

\( y_{d} \) :

Work roll displacement due to the dynamic part of sheet force (m)

\( \dot{y}_{d} \) :

Rate of change of dynamic roll gap displacement (m/s)

\( h_{c} \) :

Gap between two work rolls (m)

\( h_{c0} \) :

Gap between two work rolls at t = 0 (m)

\( \dot{h}_{c} \) :

Rate of change of roll gap (m/s)

\( \omega_{n} \) :

Natural frequency of the system not considering \( f_{d}^{s} \) (Hz)

\( h_{1} \) :

Strip thickness at entry (m)

\( h_{2} \) :

Strip thickness at exit (m)

R :

Radius of work roll (m)

\( u_{1} \) :

Strip velocity at entry (m/s)

\( {{\uptau}}_{y} \) :

Strip shear yield strength (MPa)

\( \sigma_{XX} \) :

Normal stress in X-direction (MPa)

\( \sigma_{XY} \) :

Normal stress in Y-direction (MPa)

\( {{\uptau}}_{XY} \) :

Shear stress (MPa)

m :

Contact friction coefficient between the work roll and the strip

\( {{\uptau}}_{\text{s}} \) :

Shear stress at the surface of strip (MPa)

\( x_{1} \) :

Distance measured from strip entry to the centerline of rolls (m)

\( x_{2} \) :

Strip exit position (m)

\( x_{n} \) :

Distance of neutral plane from the centerline of rolls (m)

\( m_{1} \) :

Friction factor between \( x_{n} \) and \( x_{1} \) (considered positive)

\( m_{2} \) :

Friction factor between \( x_{n} \) and \( x_{2} \) (considered negative)

p :

Roll pressure (MPa)

References

  1. Roberts, W.L.: Four high mill stand chatter of the fifth octave-mode. Iron Steel Eng. 55, 41–47 (1978)

    Google Scholar 

  2. Chefneux, L., Fischbach, J.P., Gouzou, J.: Study and industrial control of chatter in cold rolling. Iron Steel Eng. 61, 17–26 (1984)

    Google Scholar 

  3. Johnson, R.E., Qi, Q.: Chatter dynamics in sheet rolling. Int. J. Mech. Sc. 36, 617–630 (1993)

    Article  Google Scholar 

  4. Johnson, R.E.: The effect of friction and inelastic deformation on chatter in sheet rolling. Proc. R. Soc. Lond. A 445, 479–499 (1994)

    Article  MATH  Google Scholar 

  5. Yun, I.S., Wilson, W.R.D., Ehmann, K.F.: Review of chatter studies in cold rolling. J. Machine Tool Manuf. 38, 1499–1530 (1998)

    Article  Google Scholar 

  6. Yun, I.S., Wilson, W.R.D., Ehmann, K.F.: Chatter in strip rolling process—Part I: dynamic rolling modeling, ASME. J. Manuf. Sci. Eng. 120, 330–336 (1998)

    Article  Google Scholar 

  7. Yun, I.S., Wilson, W.R.D., Ehmann, K.F.: Chatter in strip rolling process—Part II: dynamic rolling experiments ASME. J. Manuf. Sci. Eng. 120, 337–342 (1998)

    Article  Google Scholar 

  8. Yun, I.S., Wilson, W.R.D., Ehmann, K.F.: Chatter in strip rolling process—Part III: chatter model ASME. J. Manuf. Sci. Eng. 120, 343–348 (1998)

    Article  Google Scholar 

  9. Hu, P.H., Ehmann, K.F.: A dynamic model of rolling process. Part-I: homogenous model. J. Machine Tool Manuf. 40, 1–19 (1999)

    Article  Google Scholar 

  10. Hu, P.H., Ehmann, K.F.: A dynamic model of rolling process. Part-II: inhomogeneous model. J. Machine Tool Manuf. 40, 21–31 (1999)

    Article  Google Scholar 

  11. Kimura, Y., Sodani, Y., Nishiura, N., Ikeuchi, N., Mihara, Y.: Chatter analysis in tandem cold rolling mills. Iron Steel Inst. Jpn 43, 77–84 (2002)

    Article  Google Scholar 

  12. Meehan, A.P.: Vibration instability in rolling mills modeling and experimental results ASME. J. Vib. Acoust. 124, 221–228 (2002)

    Article  Google Scholar 

  13. Lin, Y.J., Suh, C.S., Langari, R., Naoh, S.T.: On characteristics and mechanism of rolling instability and chatter, ASME. J. Manuf. Sci. Eng. 125, 778–786 (2003)

    Article  Google Scholar 

  14. Niziol, J., Swiatoniowski, A.: Numerical analysis of the vertical vibrations of rolling mills and their negative effect on the sheet quality. J. Mat. Proc. Tech. 162–163, 546–550 (2005)

    Article  Google Scholar 

  15. Hu, P.H., Zhao, H., Ehmann, K.F.: Third octave mode chatter in rolling. Part1: chatter model. Proc. IMechE Part B: J. Eng. Manf. 220, 1267–1277 (2006)

    Article  Google Scholar 

  16. Hu, P.H., Zhao, H., Ehmann, K.F.: Third octave mode chatter in rolling. Part2: stability of a single stand mill. Proc. IMechE Part B: J. Eng. Manuf. 220, 1279–1292 (2005)

    Article  Google Scholar 

  17. Tan, X., Yan, X.T., Juster, N.P., Raghunathan, S., Wang, J.: Dynamic friction model and its application in flat rolling. J. Mat. Proc. Tech. 207, 222–234 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Part of the present work was done while the first author visited the Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany. The financial assistance provided by the Cluster of Excellence Simulation Technology (SimTech) University of Stuttgart is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dwivedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dwivedy, S.K., Dhutekar, S.S., Eberhard, P. (2012). Numerical Investigation of Chatter in Cold Rolling Mills. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_12

Download citation

Publish with us

Policies and ethics