Advertisement

Evoking Panic in Crowd Simulation

  • Tianlu Mao
  • Qing Ye
  • Hao Jiang
  • Shihong Xia
  • Zhaoqi Wang
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)

Abstract

In order to exhibit panic phenomenon in the crowd simulation, special rules or parameters setting is needed for a given scene. In this paper, we present a panic model, named PPIB (Panic, Propagation and Influence on Behavior), which could evoke panic automatically under dangerous situation without manual intervention. PPIB describes panic behavior in three perspectives, including human mental factors and their variation caused by local situation, panic propagation, and influence of panic over the basic factors of pedestrian dynamic. Experiments show that combined with a dynamical crowd model, PPIB could evoke a wide variety of panic behaviors and exhibit emergent phenomena in crowd simulation.

Keywords

Crowd Simulation Social Force Model Crowd Motion Mental Layer Pedestrian Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schadschneider, A., Klingsch, W., Klupfel, H., Dretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science. Springer, New York (2009)Google Scholar
  2. 2.
    Keating, J.P.: The myth of Panic. Fire Journal, 57–62 (May 1982)Google Scholar
  3. 3.
    Sime, J.D.: The Concept of Panic. In: Canter, D. (ed.) Fires and Human Behaviour, vol. 1ch. 5, pp. 63–81. John Wiley & Sons Ltd. London (1990)Google Scholar
  4. 4.
    Helbing, D., Farkas, I., Molnar, P., Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations. In: Proceedings of Pedestrian and Evacuation Dynamics (2002)Google Scholar
  5. 5.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of Eurographics/ ACM SIGGRAPH Symposium of Computer Animation (2007)Google Scholar
  6. 6.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  7. 7.
    Treuille, A., Cooper, S., Popivic, Z.: Continuum Crowds. In: ACM Transactions on Graphics (SIGGRAPH 2006), pp. 1160–1168 (2006)Google Scholar
  8. 8.
    Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., Wang, Z.: Continuum Crowd Simulation in Complex Environments. Computers & Graphics 2010 34(5), 537–544 (2009)CrossRefGoogle Scholar
  9. 9.
    Helbing, Buzna, Johansson, Werner: Self-Organized Pedestrian Crowd Dynamics. Transportation Science 39(1), 1–24 (2005)CrossRefGoogle Scholar
  10. 10.
    Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modification of the Helbing-Molnar-Farkas-Vicsek Social Force Model for Pedestrian Evolution. Simulation 81(5), 339–352 (2005)CrossRefGoogle Scholar
  11. 11.
    Gelder, B., Snyder, J., Greve, D., Gerard, G., Hadjikhani, N.: Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc. Natl. Acad. Sci. 101(47), 16701–16706Google Scholar
  12. 12.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioural model. In: Computer Graphics Proceedings of SIGGRAPH 1897, vol. 21, pp. 25–34 (1987)Google Scholar
  13. 13.
    Reynolds, C.: Steering behaviours for autonomous characters: Steering behaviours for autonomous characters. In: Game Developers Conference, pp. 763–782 (1999)Google Scholar
  14. 14.
    Silverman, B., Bharathy, G., Cornwell, J., O’brien, K.: Human Behaviour Models for Agents in Simulators and Games: Part II - Gamebots for a Foreign Culture. Presence 15(2), 163–185 (2006)CrossRefGoogle Scholar
  15. 15.
    O’sullivan, C., Cassell, J., Vilhjalmsson, H., Dobbyn, S., Peters, C., Leeson, W., Giang, T., Dingliana, J.: Crowd and Group Simulation with Levels of Detail for Geometry, Motion and Behaviour. In: Third Irish Workshop on Computer Graphics (2002)Google Scholar
  16. 16.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 19–28 (2005)Google Scholar
  17. 17.
    Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the OCEAN personality model. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (May 12-16, 2008)Google Scholar
  18. 18.
    Flood, M., Dresher, M.: On game-learning theory and some decision-making experiments. In: RAND Research Memorandum (1952)Google Scholar
  19. 19.
    Drabek, T.E.: Human System Responses to Disaster: An Inventory of Sociological Findings. Springer, New York (1986)CrossRefGoogle Scholar
  20. 20.
    Tierney, K.J., Lindell, M.K., Perry, R.W.: Facing the Unexpected: Disaster Preparedness and Response in the United States. Joseph Henry Press (2001)Google Scholar
  21. 21.
    Dynes, R., Quarantelli, E., Kreps, G.: A Perspective on Disaster Planning. Disaster Research Center. University of Delaware, New York, DE(1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tianlu Mao
    • 1
  • Qing Ye
    • 1
  • Hao Jiang
    • 1
  • Shihong Xia
    • 1
  • Zhaoqi Wang
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations