Skip to main content

A Novel Method for Large Crowd Flow

  • Chapter
Transactions on Edutainment VI

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 6758))

Abstract

Large scale crowd simulation can be difficult using existing techniques due to the high computational cost of the update to large number of crowd. We present a novel technique for simulating detailed groups quickly. Coarse grid is used to represent the macroscopic crowd distribution and motion tendency consistent with fluid dynamics, allowing for a fast implicit update to a few agents for local path planning and Congestion Avoidance. This allows our simulations to run at a fraction of the cost of existing techniques while still providing the fine scale structure and details obtained. Our method scales well to very large crowd and is suitable to dynamically changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics Proceedings of SIGGRAPH 1987, vol. 21, pp. 25–34 (1987)

    Google Scholar 

  2. Bouvier, E., Guilloteau, P.: Crowd simulation in immersive space management. In: Proceedings of the 1996 Eurographics Workshop on Virtual Environments and Scientific Visualization, pp. 104–110. Springer, Berlin (1996)

    Google Scholar 

  3. Bouvier, E., Cohen, E., Bajman, L.: From crowd simulation to airbag deployment: Particle systems, a new paradigm of simulation. Journal of Electrical Imaging, 94–107 (1997)

    Google Scholar 

  4. Musse, S.R., Thalmann, D.: A hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152–164 (2001)

    Article  Google Scholar 

  5. Ulicny, B., Thalmann, D.: Crowdbrush: Interactive authoring of real-time crowd scenes. In: Proceedings of the 2004 ACM SIGGRAPH /Eurographics Symposium on Computer Animation, pp. 243–252. ACM Press, New York (2004)

    Chapter  Google Scholar 

  6. Jin, X., Xu, J., Wang, C.C.L., Huang, S., Zhang, J.: Interactive Control of Large Crowd Navigation in Virtual Environments Using Vector Fields. IEEE Computer Graphics and Applications 28(6), 37–46 (2008)

    Article  Google Scholar 

  7. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 1160–1168 (2006)

    Google Scholar 

  8. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  9. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate Dynamics for Dense Crowd Simulation. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), vol. 28(5), pp. 122–122 (2009)

    Google Scholar 

  10. Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings CGI 1997, pp. 178–188 (1997)

    Google Scholar 

  11. Stam, J.: Stable fluids. In: Proceeding of SIGGRAPH 1999, pp. 121–128 (1999)

    Google Scholar 

  12. Fedkiw, R., Stam, J., Jensen, H.: Visual simulation of smoke. In: Proc. of ACM SIGGRAPH 2001, pp. 15–22 (2001)

    Google Scholar 

  13. Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics 190, 311–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim, B.M., Liu, Y., Llamas, I., Rossignac, J.: Using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena (2005)

    Google Scholar 

  15. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 350–371 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: Proceedings of ACM SIGGRAPH 2004, vol. 23, pp. 457–462 (2004)

    Google Scholar 

  18. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding. Journal of Game Development 1, 7–28 (2004)

    Google Scholar 

  19. Shao, W., Terzopoulos, D.: Autonomous Pedestrians. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 15–28 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, X., Chen, L., Zhu, Q. (2011). A Novel Method for Large Crowd Flow. In: Pan, Z., Cheok, A.D., Müller, W. (eds) Transactions on Edutainment VI. Lecture Notes in Computer Science, vol 6758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22639-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22639-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22638-0

  • Online ISBN: 978-3-642-22639-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics