A Novel Method for Large Crowd Flow

  • Xiaoxi He
  • Leiting Chen
  • Qingxin Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


Large scale crowd simulation can be difficult using existing techniques due to the high computational cost of the update to large number of crowd. We present a novel technique for simulating detailed groups quickly. Coarse grid is used to represent the macroscopic crowd distribution and motion tendency consistent with fluid dynamics, allowing for a fast implicit update to a few agents for local path planning and Congestion Avoidance. This allows our simulations to run at a fraction of the cost of existing techniques while still providing the fine scale structure and details obtained. Our method scales well to very large crowd and is suitable to dynamically changing environment.


crowd fluid dynamics large scale potential force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics Proceedings of SIGGRAPH 1987, vol. 21, pp. 25–34 (1987)Google Scholar
  2. 2.
    Bouvier, E., Guilloteau, P.: Crowd simulation in immersive space management. In: Proceedings of the 1996 Eurographics Workshop on Virtual Environments and Scientific Visualization, pp. 104–110. Springer, Berlin (1996)Google Scholar
  3. 3.
    Bouvier, E., Cohen, E., Bajman, L.: From crowd simulation to airbag deployment: Particle systems, a new paradigm of simulation. Journal of Electrical Imaging, 94–107 (1997)Google Scholar
  4. 4.
    Musse, S.R., Thalmann, D.: A hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152–164 (2001)CrossRefGoogle Scholar
  5. 5.
    Ulicny, B., Thalmann, D.: Crowdbrush: Interactive authoring of real-time crowd scenes. In: Proceedings of the 2004 ACM SIGGRAPH /Eurographics Symposium on Computer Animation, pp. 243–252. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Jin, X., Xu, J., Wang, C.C.L., Huang, S., Zhang, J.: Interactive Control of Large Crowd Navigation in Virtual Environments Using Vector Fields. IEEE Computer Graphics and Applications 28(6), 37–46 (2008)CrossRefGoogle Scholar
  7. 7.
    Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 1160–1168 (2006)Google Scholar
  8. 8.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  9. 9.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate Dynamics for Dense Crowd Simulation. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), vol. 28(5), pp. 122–122 (2009)Google Scholar
  10. 10.
    Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings CGI 1997, pp. 178–188 (1997)Google Scholar
  11. 11.
    Stam, J.: Stable fluids. In: Proceeding of SIGGRAPH 1999, pp. 121–128 (1999)Google Scholar
  12. 12.
    Fedkiw, R., Stam, J., Jensen, H.: Visual simulation of smoke. In: Proc. of ACM SIGGRAPH 2001, pp. 15–22 (2001)Google Scholar
  13. 13.
    Dupont, T., Liu, Y.: Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics 190, 311–324 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kim, B.M., Liu, Y., Llamas, I., Rossignac, J.: Using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena (2005)Google Scholar
  15. 15.
    Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 350–371 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: Proceedings of ACM SIGGRAPH 2004, vol. 23, pp. 457–462 (2004)Google Scholar
  18. 18.
    Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding. Journal of Game Development 1, 7–28 (2004)Google Scholar
  19. 19.
    Shao, W., Terzopoulos, D.: Autonomous Pedestrians. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 15–28 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoxi He
    • 1
    • 2
  • Leiting Chen
    • 1
    • 2
  • Qingxin Zhu
    • 1
    • 2
  1. 1.University of Electronic Science and Technology of ChinaChengdu Hi-tech ZoneChina
  2. 2.Chengdu College of UESTCChengdu Hi-tech ZoneChina

Personalised recommendations