Real-Time Implementation for Weighted-Least-Squares-Based Edge-Preserving Decomposition and Its Applications

  • Qingfeng Li
  • Hanli Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


This paper presents a GPU-based implementation for constructing edge-preserving multiscale image decompositions. An input image is decomposed into a piecewise smooth base layer and multiple detail layers. The base layer captures large scale variations in the image, while the detail layers contain the small scale details. The detail layers are progressively obtained with the edge-preserving weighted least squares optimizations. The improvement of performance is achieved by introducing a Jacobi-like GPU solver, which converges to the right solution much faster than the standard Jacobi iterator. Note that the whole pipeline design is highly parallel, enabling a real-time implementation. Several experimental examples on edge-preserving tonal adjustment and image abstraction are shown to demonstrate the feasibility of the proposed method.


Edge-preserving smoothing detail enhancement image abstraction Jacobi GPU 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buatois, L., Caumon, G., Lévy, B.: Concurrent number cruncher: An efficient sparse linear solver on the GPU. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 358–371. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Paris, S., Durand, F.: Real-Time Edge-Aware Image Processing with the Bilateral Grid. ACM Transactions on Graphics, 26(3), Article 103 (2007)CrossRefGoogle Scholar
  3. 3.
    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-Preserving Decompositions for Multi-scale Tone and Detail Manipulation. Proc. of ACM SIGGRAPH ’08, ACM, article 67 (2008)Google Scholar
  4. 4.
    Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale Shape and Detail Enhancement from Multi-light Image Collections, Proc. of ACM SIGGRAPH ’07, ACM, article 51 (2007)Google Scholar
  5. 5.
    Goodnight, N., Woolley, C., Lewn, G., Luebke, D., Humphreys, G.: A Multigrid Solver for Boundary Value Problems using Programmable Graphics Hardware. In: Proc. of EUROGRAPHICS/SIGGRAPH Workshop on Graphics Hardware 2003, pp. 102–111. EUROGRAPHICS Association (2003)Google Scholar
  6. 6.
    Lischinski, D., Farbman, Z., Uytendaele, M., Szeliski, R.: Interactive Local Adjustment of Tonal Values. ACM Transactions on Graphics 25(3), 646–653 (2006)CrossRefGoogle Scholar
  7. 7.
    Ian, J.B., Farmer, I., Grinspun, E., Schroeder, P.: Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. In: Proc. of ACM SIGGRAPH 2003, pp. 917–924. ACM, New York (2003)Google Scholar
  8. 8.
    Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian Solver for Diffusion Curves and Poisson Image Editing. In: Proc. of ACM SIGGRAPH Asia 2009, pp. 1–8. ACM, New York (2009)Google Scholar
  9. 9.
    NVIDIA Corp.: CUDA Programming Guid for CUDA Toolkit 3.0 (2010),
  10. 10.
    Perona, P., Malik, J.: Scale-Space and Edge Detection using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  11. 11.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C: the Art of Scientific Computing, pp. 871–888. Cambridge University Press, New York (1992)zbMATHGoogle Scholar
  12. 12.
    Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: Proc. of IEEE International Conference on Computer Vision (ICCV 1998), pp. 839–846 (1998)Google Scholar
  13. 13.
    Tumblin, J., Turk, G.: LCIS: A Boundary Hierarchy for Detail-Preserving Contrast Reduction. In: Proc. ACM SIGGRAPH 1999, pp. 83–90. ACM, New York (1999)Google Scholar
  14. 14.
    Winnemöller, H., Olsen, S., Gooch, B.: Real-Time Video Abstraction. ACM Transactions on Graphics 25(3), 1221–1226 (2006)CrossRefGoogle Scholar
  15. 15.
    Wyszecki, G., Stiles, W.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York (1982)Google Scholar
  16. 16.
    Zhao, H., Jin, X., Shen, J., Mao, X., Feng, J.: Real-time Feature-Aware Video Abstraction. The Visual Computer 24(7-9), 727–734 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qingfeng Li
    • 1
  • Hanli Zhao
    • 2
  1. 1.College of Electron & Information EngineeringNingbo University of TechnologyNingboChina
  2. 2.College of Physics & Electronic Information EngineeringWenzhou UniversityWenzhouChina

Personalised recommendations