Detail-Preserving Rendering of Free Surface Fluid with Lattice Boltzmann

  • Changbo Wang
  • Qiang Zhang
  • Zhuopeng Zhang
  • Peng Yang
  • Zhengdong Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


Free surface flows represent a special case in the fluids simulation application. A highly effective method of modeling and rendering based on Lattice Boltzmann Model (LBM) to simulate the fluid with free surface is presented. Firstly, the LBM model with adaptive coarsening grids for free surface flows is adopted to model the fluid volume. And then a new method combined with the Marching Cubes and free surface algorithm is proposed to extract the fluid surface. Adaptive surface tension combining wave particles equation is used to show the details of fluid surface. After that, an external stack mechanism of moving obstacles is used to realize interacting calculation of fluid with environment. Finally, the hardware accelerating technology is successfully adopted to achieve realistic rendering of complex fluid scenes with different free surface, including flush flood, droplet, etc.


Lattice Boltzmann Method Fluid rendering Free surface Details 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D non-hydrostatic free surface flows. Computing and Visualization in Science 5(2), 85–94 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    McNamara, G., Zanetti, G.: Use of the Boltzmann equation to simulate lattice gas automata. Physical Review Letters 61(20), 2332–2335 (1988)CrossRefGoogle Scholar
  3. 3.
    Wei, X., Li, W., Mueller, K., Kaufman, A.: Simulating fire with texture splats. In: IEEE Visualization 2002, pp. 227–234. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  4. 4.
    Wei, X., Li, W., Mueller, K., Kaufman, A.: The Lattice-Boltzmann method for gaseous phenomena. IEEE Trans. on Visualization and Computer Graphics 10(2), 164–176 (2004)CrossRefGoogle Scholar
  5. 5.
    Qiu, F., Zhao, Y., Fan, Z., Wei, X., Lorenz, H., Wang, J., Yoakum-Stover, S., Kaufman, A., Mueller, K.: Accelerated dispersion simulation for urban security. In: IEEE Visualization 2004, pp. 553–560 (2004)Google Scholar
  6. 6.
    Zhao, Y.: Modeling Natural Phenomena with Lattice Boltzmann Method, Stony Brook University, Ph.d thesis (2006)Google Scholar
  7. 7.
    Geist, R., Corsi, C., Tessendorf, J., Westall, J.: Lattice-boltzmann water waves. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 74–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Zhu, H., Bao, K., Liu, X.: Stable and efficient miscible liquid-liquid interactions. In: ACM symposium on Virtual reality software and technology, pp. 55–64. ACM Press, Newport Beach (2007)Google Scholar
  9. 9.
    Bao, K., Wu, X.L., Zhang, H., et al.: Volume Fraction Based Miscible and Immiscible Fluid Animation. Computer Animation and Virtual Worlds 21(3-4), 401–410 (2010)Google Scholar
  10. 10.
    Zhe, F., Qiu, F., Arie, E.K.: Zippy: A Framework for Computation and Visualization on a GPU Cluster. Comput. Graph. Forum 27(2), 341–350 (2008)CrossRefGoogle Scholar
  11. 11.
    Alim, U.R., Alireza, E., Torsten, M.: The Lattice-Boltzmann method on Optimal Sampling Lattices. IEEE Trans. on Visualization and Computer Graphics Archive 15(4), 630–641 (2009)CrossRefGoogle Scholar
  12. 12.
    Petkov, K., Qiu, F., Zhe, F., et al.: Efficient LBM Visual Simulation on Face-Centered Cubic Lattices. IEEE Trans. on Visualization and Computer Graphics 15(5), 802–814 (2009)CrossRefGoogle Scholar
  13. 13.
    Kevin, R.T., Frank, T.C.: Multilayer shallow water flow using lattice Boltzmann method with high performance computing. Advances in Water Resources 32(12), 1767–1776 (2009)CrossRefGoogle Scholar
  14. 14.
    Liu, H.F., Zhou, J.G., Burrows, R.: Multi-block lattice Boltzmann simulations of subcritical flow in open channel junctions. Computers & Fluids 38(6), 1108–1117 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques. ACM Trans. Graph. 25, 805–811 (2006)CrossRefGoogle Scholar
  16. 16.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Transactions on Graphics 21(3), 736–744 (2002)CrossRefGoogle Scholar
  17. 17.
    Thurey, N., Rude, U.: Free surface lattice-Boltzmann fluid simulations with and without level sets. In: Workshop on Vision, Modeling and Visualization, Stanford, California, USA, November 16-18, AkaGmbH, pp. 199–208 (2004)Google Scholar
  18. 18.
    Thurey, N., Iglberger, K., Rude, U.: Free Surface Flows with Moving and Deforming Objects for LBM. In: Proceedings of Vision, Modeling and Visualization 2006. IOS Press, Amsterdam (2006)Google Scholar
  19. 19.
    Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive application. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, California, pp. 154–159 (2003)Google Scholar
  20. 20.
    Yan, K., Wang, Z.Y., Wang, C.B., et al.: Real-time fluid simulation with adaptive SPH. Computer Animation and Virtual Worlds 20(2-3), 417–426 (2009)CrossRefGoogle Scholar
  21. 21.
    Yuksel, C., House, D.H., Keyser, J.: Wave Particles. ACM Transactions on Graphics 26(3) (2007)Google Scholar
  22. 22.
    Thurey, N., Wojtan, C., Gross, M.: A Multiscale Approach to Mesh-based Surface Tension Flows. ACM Trans. Graph (SIGGRAPH 2010) 29(4), 1–10 (2010)CrossRefGoogle Scholar
  23. 23.
    Brochu, T., Batty, C., Bridson, R.: Matching Fluid Simulation Elements to Surface Geometry and Topology. ACM Transactions on Graphics 29(4) (2010)Google Scholar
  24. 24.
    Zhu, B., Yang, X.B., Fan, Y.: Creating and Preserving Vortical Details in SPH Fluid. Computer. Graphics Forum 29(7), 2207–2214 (2010)CrossRefGoogle Scholar
  25. 25.
    Filippova, H.D.: Grid Refinement for Lattice-BGK Models. J. Computational Physics 147(11), 219–228 (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Thurey, N., Rude, U.: Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Computing and Visualization in Science 12(5), 247–263 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Changbo Wang
    • 1
  • Qiang Zhang
    • 1
  • Zhuopeng Zhang
    • 1
  • Peng Yang
    • 1
  • Zhengdong Xia
    • 1
  1. 1.Software Engineering InsitituteEast China Normal UniversityShanghaiChina

Personalised recommendations