A Multi-layer Model for Face Aging Simulation

  • Yixiong Liang
  • Ying Xu
  • Lingbo Liu
  • Shenghui Liao
  • Beiji Zou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


Face aging simulation is a very complex and challenging task and interests many researchers in the fields of psychology, computer graphics and computer vision due to its widely applications. In this paper, we propose a multi-layer coarse-to-fine face representation and aging simulation and animation algorithm. In the coarse layer, we build a global statistical appearance model for representation and faces are aged based on the learned age trajectory in the appearance space. In the mid layer, we learned a set of age specific coupled dictionaries and the faces are represented and aged via the sparse representation on the learned dictionary. At the fine layer, we sample a lot of patches of facial components and skin zones from images of each age group and use them as the dictionaries to simulate the aging effects of the facial components and wrinkles. We collect a database of 10,050 Chinese passport-type images with different ages for the learning and aging simulation. Experimental results demonstrate the effectiveness of the proposed method.


Aging simulation Statistical appearance model Age specific coupled dictionaries Sparse representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322Google Scholar
  2. 2.
    Boissieux, L., Kiss, G., Thalmann, N.M., Kalra, P.: Simulation of skin aging and wrinkles with cosmetics insight. In: proceedings of the EUROGRAPHICS Workshop, pp. 15–27 (2000)Google Scholar
  3. 3.
    Burt, D.M., Perrett, D.I.: Perception of age in adult caucasian male faces: Computer graphic manipulation of shape and color information. Proceedings of the Royal Society of London B 259, 137–143 (1995)CrossRefGoogle Scholar
  4. 4.
    Cootes, T., Taylor, C.: Statistical models of appearance for computer vision. Technical Report, The University of Manchester School of Medicine (2004)Google Scholar
  5. 5.
    Dayan, N.: Skin aging handbook: An integrated approach to biochemistry and product development. Andrew William Press (2008)Google Scholar
  6. 6.
    Fu, Y., Guo, G., Huang, T.: Age synthesis and estimation via faces: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 1955–1976 (2010)CrossRefGoogle Scholar
  7. 7.
    Fu, Y., Zheng, N.: M-face: An appearance-based photorealistic model for multiple facial attributes rendering. IEEE Transactions on Circuits and Systems for Video Technology 16(7), 830–842 (2006)CrossRefGoogle Scholar
  8. 8.
    Golovinskiy, A., Matusik, W., Pfister, H., Rusinkiewicz, S., Funkhouser, T.: A statistical model for synthesis of detailed facial geometry. In: ACM SIGGRAPH, pp. 1025–1034 (2006)Google Scholar
  9. 9.
    Scandrett née Hill, C., Solomon, C., Gibson, S.: A person-specific, rigorous aging model of the human face. Pattern Recognition Letters 27(15), 1776–1787 (2006)CrossRefGoogle Scholar
  10. 10.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (2002)zbMATHGoogle Scholar
  11. 11.
    Hubball, D., Chen, M., Grant, P.W.: Image-based aging using evolutionary computing. In: EUROGRAPHICS, Computer Graphics Forum, vol. 27, pp. 607–616 (2008)Google Scholar
  12. 12.
    Hutton, T.J., Buxton, B.F., Hammond, P., Potts, H.W.W.: Estimating average growth trajectories in shape-space using kernel smoothing. IEEE Transactions on Medical Imaging 22(6), 747–753 (2003)CrossRefGoogle Scholar
  13. 13.
    Jiang, F.Y., Wang, Y.H.: Facial aging simulation based on super-resolution in tenson space. In: International Conference on Image Processing, pp. 1648–1651 (2008)Google Scholar
  14. 14.
    Lanitis, A.: Comparative evaluation of automatic age-progression methodologies. EURASIP Journal on Advances in Signal Processing 2008, 1–10 (2008)Google Scholar
  15. 15.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 422–455Google Scholar
  16. 16.
    Lee, W.S., Wu, Y., Thalmann, N.M.: Cloneing and aging in a vr family. In: IEEE Conference on Virtual Reality, pp. 61–68 (1999)Google Scholar
  17. 17.
    Liang, Y.X., Li, C.R., Yue, H.Q., Luo, Y.Y.: Age simulation in young face images. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 494–497 (2007)Google Scholar
  18. 18.
    Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Study of face recognition as people age. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  19. 19.
    Liu, C., Shum, H., Freeman, W.: Face hallucination: Theory and practice. International Journal of Computer Vision 75(1), 115–134 (2007)CrossRefGoogle Scholar
  20. 20.
    Ojala, T., pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    O’Toole, Price, T., Vetter, T., Barlett, J.C., Blanz, V.: 3D shape and 2D surface textures of human faces: The role of averages in attractiveness and age. Image and Vision Computing 18(1), 9–19 (1999)CrossRefGoogle Scholar
  22. 22.
    O’Toole, Vetter, T., Volz, H., Salter, E.: Three-dimensional caricatures of human heads: Distinctiveness and the perception of facial age. Perception 26, 719–732 (1997)CrossRefGoogle Scholar
  23. 23.
    Park, U., Tong, Y., Jain, A.: Age-invariant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 947–954 (2010)CrossRefGoogle Scholar
  24. 24.
    Pittenger, J.B., Shaw, R.E., Mark, L.S.: Perceptual information for the age level of faces as a higher order invariant of growth. Journal of Experimental Psychology: Human Perception and Performance 5(3), 478–493 (1979)Google Scholar
  25. 25.
    Ramanathan, N., Chellappa, R., Biswas, S.: Modeling age progression in young faces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 387–394 (2006)Google Scholar
  26. 26.
    Ramanathan, N., Chellappa, R., Biswas, S.: Modeling shape and textural variations in aging faces. In: 8th IEEE International Conference on Automatric Face and Gesture Recognition, pp. 1–8 (2008)Google Scholar
  27. 27.
    Ramanathan, N., Chellappa, R., Biswas, S.: Age progression in human faces: A survey. Journal of Visual Languages and Computing 15, 3349–3361 (2009)Google Scholar
  28. 28.
    Scherbaum, K., Sunkel, M., Seidel, H.P., Blanz, V.: Prediction of individual non-linear aging trajectories of faces. In: EUROGRAPHICS, Computer Graphics Forum, vol. 26 (2007)Google Scholar
  29. 29.
    Singh, R., Vatsa, M., Noore, A., Singh, S.K.: Age transformation for improving face recognition. In: Proceedings of the 2nd international conference on Pattern recognition and machine intelligence, pp. 576–583 (2007)Google Scholar
  30. 30.
    Suo, J.L., Min, F., Zhu, S.C., Shan, S.G., Chen, X.L.: A multi-resolution dynamic model for face aging simulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  31. 31.
    Suo, J.L., Zhu, S.C., Chen, X.L.: A compositional and dynamic model for face aging. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 358–401 (2010)Google Scholar
  32. 32.
    Tiddeman, B., Burt, D.M., Perrett, D.I.: Prototyping and transforming facial textures for perception research. IEEE Computer Graphics and Applications 21(5), 42–50 (2001)CrossRefGoogle Scholar
  33. 33.
    Todd, J.T., Mark, L.S., Shaw, R.E., Pittenger, J.B.: The perception of human growth. Scientific American 242(2), 132–144 (1980)CrossRefGoogle Scholar
  34. 34.
    Wang, J.N., Ling, C.J.: Artificial aging of faces by support vector machines. In: Advances in Artifical Intelligence, pp. 499–503 (2006)Google Scholar
  35. 35.
    Wu, Y., Kalra, P., Moccozet, L., Thalmann, N.: Simulating wrinkles and skin aging. The Visual Computer 15(4), 183–198 (1999)CrossRefGoogle Scholar
  36. 36.
    Yang, J., Tang, H., Ma, Y., Huang, T.: Face hallucination via sparse coding. In: 15th IEEE International Conference on Image Processing, pp. 1264–1267. IEEE, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yixiong Liang
    • 1
  • Ying Xu
    • 1
  • Lingbo Liu
    • 1
  • Shenghui Liao
    • 1
  • Beiji Zou
    • 1
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations