Adding Physical Like Reaction Effects to Skeleton-Based Animations Using Controllable Pendulums

  • Ahmad Abdul Karim
  • Thibaut Gaudin
  • Alexandre Meyer
  • Axel Buendia
  • Saida Bouakaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


We propose a system capable in real time of adding controllable and plausible oscillating physical like reaction effects in response to external forces (perturbations). These oscillating effects may be used to modify a motion or to customize it in a cartoon like way. The core of our system is based on several connected 3D pendulums with a propagating reaction. These pendulums always return to a preferred direction that can be fixed in advance or can be modified during the motion by external predefined data (such as keyframe). Our pendulums are fully controllable, concerning reaction time and damping, and the results are completely deterministic. They are easy to implement, even without any prior knowledge of physical simulations. Our system is applicable on articulated body with predefined motion data (manually set or captured) or procedural animation.


Prefer Direction External Perturbation Computer Animation Motion Capture Data Father Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, B., Chu, D., Shapiro, A., Faloutsos, P.: On the beat!: timing and tension for dynamic characters. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation (2007)Google Scholar
  2. 2.
    Arikan, O., Forsyth, D.A., O’Brien, J.F.: Pushing people around. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2005)Google Scholar
  3. 3.
    Barzel, R., Hughes, J.F., Wood, D.N.: Plausible motion simulation for computer graphics animation. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation (1996)Google Scholar
  4. 4.
    Bruderlin, A., Williams, L.: Motion signal processing. In: Proceedings of the Annual Conference on Computer Graphics & Interactive Techniques, SIGGRAPH (1995)Google Scholar
  5. 5.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.: Interactive skeleton-driven dynamic deformations. In: Proceedings of 29th Annual Conference on Computer Graphics& Interactive Techniques, SIGGRAPH (2002)Google Scholar
  6. 6.
    Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel o(log(n)) calculation of rigid body dynamics. part 1:basic algorithm (1999)Google Scholar
  7. 7.
    Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel o(log(n)) calculation of rigid-body dynamics. part 2:trees,loops,& accuracy (1999)Google Scholar
  8. 8.
    Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27, 107:1–107:2 (2008)CrossRefGoogle Scholar
  9. 9.
    Hsu, E., da Silva, M., Popović, J.: Guided time warping for motion editing. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2007)Google Scholar
  10. 10.
    Kanyuk, P.: Brain springs: Fast physics for large crowds in wall-e. IEEE Computer Graphics and Applications 29, 19–25 (2009)CrossRefGoogle Scholar
  11. 11.
    Kokkevis, E., Metaxas, D., Badler, N.I.: User-controlled physics-based animation for articulated figures. In: Proceedings of the Computer Animation (1996)Google Scholar
  12. 12.
    Landau, Y.D.: Adaptive control: the model reference approach / Yoan D. Landau. Dekker, New York (1979)Google Scholar
  13. 13.
    Müller, M., Stam, J., James, D., Thürey, N.: Real time physics: class notes. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Classes, pp. 1–90. ACM, New York (2008)Google Scholar
  14. 14.
    Reitsma, P.S.A., Pollard, N.S.: Evaluating motion graphs for character animation. ACM Trans. Graph. 26 (October 2007)Google Scholar
  15. 15.
    van, H.W., van, B.B., Egges, A., Ruttkay, Z., Overmars, M.H.: Real time character animation: A trade-off between naturalness and control. In: Eurographics (2009)Google Scholar
  16. 16.
    Volino, P., Magnenat-Thalmann, N., Faure, F.: A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Transaction on Graphics (2009)Google Scholar
  17. 17.
    Zordan, V., Macchietto, A., Medina, J., Soriano, M., Wu, C.C.: Interactive dynamic response for games. In: Sandbox: Proceedings of the ACM SIGGRAPH symposium on Video games (2007)Google Scholar
  18. 18.
    Zordan, V., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. In: ACM SIGGRAPH 2005 Papers (2005)Google Scholar
  19. 19.
    Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ahmad Abdul Karim
    • 1
    • 2
  • Thibaut Gaudin
    • 2
  • Alexandre Meyer
    • 1
  • Axel Buendia
    • 2
    • 3
  • Saida Bouakaz
    • 1
  1. 1.LIRIS, UMR5205Université de Lyon, CNRS Université Lyon 1France
  2. 2.Spir.Ops Artificial IntelligenceParisFrance
  3. 3.CNAM – CEDRICParisFrance

Personalised recommendations