Pattern Based Motion for Crowd Simulation

  • Nan Hu
  • Michael Lees
  • Suiping Zhou
  • Vaisagh Viswanathan T.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6758)


We present a pattern-based approach for simulating the steering behaviour of pedestrians, which aims to imitate the way that real pedestrians perceive spatial-temporal information and make steering decisions in daily-life situations. Novel representations of spatial-temporal patterns are proposed that allow modellers to intuitively and naturally specify some prototypical patterns for various steering behaviours. Based on the spatial-temporal patterns, a hierarchical pattern matching process has been developed, which simulates how pedestrians process spatial temporal information and make steering decisions. Experimental results show that this new approach is quite promising and capable of producing human-like steering. We hope that the idea presented in this paper can direct researchers in this area with a fresh perspective.


steering behaviour spatial-temporal patterns crowd simulation motion planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  2. 2.
    Hu, N., Zhou, S., Wu, Z., Zhou, M., Cho, B.E.K.: Spatial-temporal patterns and pedestrian simulation. Computer Animation and Virtual Worlds 21, 387–399 (2010)Google Scholar
  3. 3.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21, 25–34 (1987)CrossRefGoogle Scholar
  4. 4.
    Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  5. 5.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, pp. 5917–5922 (2009)Google Scholar
  6. 6.
    Van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium On Robotics Research (2009)Google Scholar
  7. 7.
    Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban environments using local laws (2003)Google Scholar
  8. 8.
    Lamarche, F., Donikian, S.: Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments. Computer Graphics Forum 23, 509–518 (2004)CrossRefGoogle Scholar
  9. 9.
    Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152–164 (2001)CrossRefGoogle Scholar
  10. 10.
    Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation (2007)Google Scholar
  11. 11.
    Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum 26, 655–664 (2007)CrossRefGoogle Scholar
  12. 12.
    Pelechano, N., O’Brien, K., Silverman, B., Badler, N.: Crowd simulation incorporating agent psychological models, roles and communication. In: Proceedings of the First International Workshop on Crowd Simulation (2005)Google Scholar
  13. 13.
    Rymill, S.J., Dodgson, N.A.: A psychologically-based simulation of human behaviour (2005)Google Scholar
  14. 14.
    Sakuma, T., Mukai, T., Kuriyama, S.: Psychological model for animating crowded pedestrians: Virtual humans and social agents. Comput. Animat. Virtual Worlds 16, 343–351 (2005)CrossRefGoogle Scholar
  15. 15.
    Paris, S., Pettre, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. Computer Graphics Forum 26(1), 665–674 (2007)CrossRefGoogle Scholar
  16. 16.
    Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: 3D 2009: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, Boston, Massachusetts, pp. 215–223. ACM Press, New York (2009)Google Scholar
  17. 17.
    Ondrej, J., Julien, P., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics 29, 1–9 (2010)CrossRefGoogle Scholar
  18. 18.
    Luke, S., Claudio, C.R., Liviu, P., Keith, S.: Mason: A new multi-agent simulation toolkit (2004)Google Scholar
  19. 19.
    Van den Berg, J., Guy, S., Snape, J., Lin, M., Manocha, D.: Rvo2 library: Reciprocal collision avoidance for real-time multi-agent simulation (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nan Hu
    • 1
  • Michael Lees
    • 1
  • Suiping Zhou
    • 2
  • Vaisagh Viswanathan T.
    • 1
  1. 1.School of Computer EngineeringNTUSingapore
  2. 2.School of ComputingTeesside UnivesityUnited Kingdom

Personalised recommendations