Skip to main content

Lyapunov-Based Robustness Analysis Techniques for Clearance

  • Chapter
Optimization Based Clearance of Flight Control Laws

Abstract

This chapter considers different techniques for robustness analysis of uncertain systems modeled by linear fractional representations, based on the use of parameter-dependent Lyapunov functions and multipliers. Several sufficient conditions for robust stability, relying on the choice of simplified structures for the Lyapunov function and the multiplier matrices, are proposed. These conditions provide a useful tool for trading off conservatism and computational burden, which is a key issue when addressing robustness analysis of high dimensional uncertain systems arising from clearance problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fielding, C., Varga, A., Bennani, S., Selier, M. (eds.): Advanced Techniques for Clearance of Flight Control Laws. LNCIS, vol. 283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Bates, D.G., Kureemun, R., Mannchen, T.: Improved clearance of a flight control law using μ-analysis techniques. Journal of Guidance, Control and Dynamics 26(6), 869–884 (2003)

    Article  Google Scholar 

  3. Menon, P.P., Bates, D., Postlethwaite, I.: Nonlinear robustness analysis of flight control laws for highly augmented aircraft. Control Engineering Practice 15, 655–662 (2007)

    Article  Google Scholar 

  4. Juliana, S., Chu, Q.P., Mulder, J.A.: Reentry flight clearance using interval analysis. Journal of Guidance, Control and Dynamics 31(5), 1295–1306 (2008)

    Article  Google Scholar 

  5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  6. Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. on Automatic Control 41(3), 436–442 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust \(\mathcal{D}\)-stability condition for real convex polytopic uncertainty. Systems and Control Letters 40, 21–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leite, V.J.S., Peres, P.L.D.: An improved LMI condition for robust \(\mathcal{D}\)-stability of uncertain polytopic systems. IEEE Trans. on Automatic Control 48(3), 500–504 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach. IEEE Trans. on Automatic Control 50(3), 365–370 (2005)

    Article  MathSciNet  Google Scholar 

  10. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall Inc., Englewood Cliffs (1996)

    MATH  Google Scholar 

  11. Wang, F., Balakrishnan, V.: Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems. IEEE Trans. on Automatic Control 47(5), 720–734 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dasgupta, S., Chockalingam, G., Anderson, B.D.O., Fu, M.: Lyapunov functions for uncertain systems with applications to the stability of time varying systems. IEEE Transactions on Circuits and Systems - I 41(2), 93–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, M., Dasgupta, S.: Parametric Lyapunov function for uncertain systems: The multiplier approach. In: El Ghaoui, L., Niculescu, S.-I. (eds.) Advances in Linear Matrix Inequality Methods in Control. SIAM, Philadelphia (2000)

    Google Scholar 

  14. Dettori, M., Scherer, C.: New robust stability and performance conditions based on parameter dependent multipliers. In: Proc. of 39th IEEE Conf. on Decision and Control, Sydney, Australia, pp. 4187–4192 (2000)

    Google Scholar 

  15. Ebihara, Y., Hagiwara, T.: A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems. Automatica 41(11), 1933–1941 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Popov, V.M.: Absolute stability of nonlinear systems of automatic control. Automation and Remote Control 22, 857–875 (1962)

    Google Scholar 

  17. Gomes da Sliva Jr., J.M., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability: an LMI-based approach. IEEE Transactions on Automatic Control 50(1), 106–111 (2005)

    Article  Google Scholar 

  18. Hu, T., Teel, A.R., Zaccarian, L.: Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Transactions on Automatic Control 51(11), 1770–1786 (2006)

    Article  MathSciNet  Google Scholar 

  19. Dai, D., Hu, T., Teel, A.R., Zaccarian, L.: Piecewise-quadratic Lyapunov functions for systems with deadzones or saturations. Systems & Control Letters 58(5), 365–371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Biannic, J.-M., Tarbouriech, S.: Optimization and implementation of dynamic anti-windup compensators with multiple saturations in flight control systems. Control Engineering Practice 17(6), 707–713 (2009)

    Article  Google Scholar 

  21. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004), http://users.isy.liu.se/johanl/yalmip/

  22. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3 - a Matlab software package for semidefinite programming. Optimization Methods and Software 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  23. Magni, J.-F.: Linear Fractional Representation Toolbox (version 2.0) for use with Matlab. Technical report (2006), http://www.onera.fr/staff-en/jean-marc-biannic/docs/lfrtv20s.zip

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garulli, A., Masi, A., Paoletti, S., Türkog̃lu, E. (2012). Lyapunov-Based Robustness Analysis Techniques for Clearance. In: Varga, A., Hansson, A., Puyou, G. (eds) Optimization Based Clearance of Flight Control Laws. Lecture Notes in Control and Information Sciences, vol 416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22627-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22627-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22626-7

  • Online ISBN: 978-3-642-22627-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics