Advertisement

Establishing a Museum Display Platform by Using Combination of Reflection Holograms and Tangible Augmented Reality

  • Alfred Chen
  • Chen-Yuan Kao
  • Ying-Hsiu Chen
  • Wen-Cheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6750)

Abstract

When we preview the current developments of Augmented Reality (AR) and holography, we realize that these tools have been applied separately. We combine these two technologies in order to create a powerful system for science, industry and education. This paper focuses on the feasible combination of reflection holograms and tangible AR starting with analysis of between both technologies. We investigated human/computer interaction with the tangible user interfaces (TUI) to ensure its usability. Experiments were conducted to verify the combination process. Later, experiments were conducted to manipulate the TUI where an artistic image made by reflection holograms and tangible AR was displayed. According to the experimental results, we named this combined application as the Augmented-Holograms Display Platform (AHDP).

Keywords

Augmented Reality Holography Reflection Holograms Human/Computer Interaction Augmented-Holograms Display Platform (AHDP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Computer Graphics and Applications 21(6), 34–47 (2001)CrossRefGoogle Scholar
  2. 2.
    Bimber, O.: Augmenting Holograms. IEEE Computer Graphics and Applications 26(5), 12–17 (2006)CrossRefGoogle Scholar
  3. 3.
    Rekimoto, J.: A Magnifying Glass Approach to Augmented Reality Systems. MIT Press Journals - Presence: Teleoperators & Virtual Environments 6(4), 399–412 (1997)Google Scholar
  4. 4.
    Kiyokawa, K., Takemura, H., Yokoya, N.: SeamlessDesign for 3-D Object Creation. IEEE MultiMedia 7(1), 22–33 (2000)CrossRefGoogle Scholar
  5. 5.
    Billinghurst, M., Poupyrev, I., Kato, H., May, R.: Mixing Realities in Shared Space: An Augmented Reality Interface for Collaborative Computing. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2000), New York, U.S.A (2000)Google Scholar
  6. 6.
    Kato, H., Billinghurst, M., Poupyrev, I., Tetsutani, N., Tachibana, K.: Tangible Augmented Reality for Human Computer Interaction. In: Proceedings of Nicograph 2001, Nagoya, Japan (2001)Google Scholar
  7. 7.
    Liarokapis, F., Brujic-Okretic, B., Papakonstantinou, S.: Exploring Urban Environments Using Virtual and Augmented Reality. Journal of Virtual Reality and Broadcasting 3(5), 1–13 (2001)Google Scholar
  8. 8.
    Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 104–114. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Rohs, M.: Marker-Based Embodied Interaction for Handheld Augmented Reality Games. Journal of Virtual Reality and Broadcasting 4(5), 1–12 (2007)Google Scholar
  10. 10.
    Chen, I.Y.-H., MacDonald, B.A., Wünsche, B.: Markerless augmented reality for robotic helicoptor applications. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 125–138. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Cano, A.M., Gayá, F., Lamata, P., Sánchez-González, P., Gómez, E.J.: Laparoscopic tool tracking method for augmented reality surgical applications. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 191–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Pribeanu, C., Iordache, D.D.: Evaluating the motivational value of an augmented reality system for learning chemistry. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 31–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Schmalstieg, D., Wagner, D.: Mobile Phones as a Platform for Augmented Reality. In: Proceedings of the IEEE VR 2008 Workshop on Software Engineering and Architectures for Realtime Interactive Systems, Reno, NV, USA (2008)Google Scholar
  14. 14.
    Lucente, M.: Interactive Three-Dimensional Holographic Displays: Seeing the Future in Depth. ACM SIGGRAPH Computer Graphics 31(2), 63–67 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bimber, O.: Combining Optical Holograms with Interactive Computer Graphics. IEEE Computer 37(1), 85–91 (2004)CrossRefGoogle Scholar
  16. 16.
    Tsumoto, S., Hirano, S.: Contingency Matrix Theory I: Rank and Statistical Independence in a Contigency Table. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Yao, Y., Wang, G. (eds.) Transactions on Computational Science II. LNCS, vol. 5150, pp. 161–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Bimber, O.: Augmenting Holograms. IEEE Computer Graphics and Applications 26(5), 12–17 (2006)CrossRefGoogle Scholar
  18. 18.
    Chapanis, A.: Engineering psychology. In: Dunnette, M.D. (ed.) Handbook of Industrial and Organizational Psychology. Rand McNally, Chicago (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alfred Chen
    • 1
  • Chen-Yuan Kao
    • 2
  • Ying-Hsiu Chen
    • 2
  • Wen-Cheng Wang
    • 3
  1. 1.Department of Spatial DesignKun Shan UniversityYung-Kang CityTaiwan
  2. 2.Department of Industrial DesignNational Cheng Kung UniversityTainan CityTaiwan
  3. 3.Department of Business ManagementHwa Hsia Institute of TechnologyTaipeiTaiwan

Personalised recommendations