Advertisement

Valued Dominance-Based Rough Set Approach to Incomplete Information System

  • Xibei Yang
  • Huili Dou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6750)

Abstract

In this paper, we present an explorative research focusing on dominance–based rough set approach to the incomplete information systems. In most of the rough set literatures, an incomplete information system indicates an information system with unknown values. By assuming that the unknown value can be compared with any other values in the domain of the corresponding attributes, the concept of the valued dominance relation is proposed to show the probability that an object is dominating another one. The fuzzy rough approximations in terms of the valued dominance relation are then constructed. It is shown that by the valued dominance–based fuzzy rough set, we can obtain greater lower approximations and smaller upper approximations than the old dominance–based rough set in the incomplete information systems. Further on the problem of inducing “at least” and “at most” decision rules from incomplete decision system is also addressed. Some numerical examples are employed to substantiate the conceptual arguments.

Keywords

Dominance Relation Decision System Decision Class Multicriteria Decision Analysis Indiscernibility Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough sets–theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  2. 2.
    Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernet. Syst. 29, 661–688 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Pawlak, Z.: Rough sets and intelligent data analysis. Inform. Sci. 147, 1–12 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inform. Sci. 177, 3–27 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inform. Sci. 177, 28–40 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inform. Sci. 177, 41–73 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation by dominance relations. Int. J. Intell. Syst. 17, 153–171 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple–premise gradual decision rules. Int. J. Approx. Reason. 41, 179–211 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Błaszczyński, J., Greco, S., Słowiński, R.: Multi–criteria classification–A new scheme for application of dominance–based decision rules. Eur. J. Oper. Res. 181, 1030–1044 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fan, T.F., Liu, D.R., Tzeng, G.H.: Rough set–based logics for multicriteria decision analysis. Eur. J. Oper. Res. 182, 340–355 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inform. Sci. 112, 39–49 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Latkowski, R.: Flexible indiscernibility relations for missing attribute values. Fund. Inform. 67, 131–147 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Leung, Y., Li, D.Y.: Maximal consistent block technique for rule acquisition in incomplete information systems. Inform. Sci. 115, 85–106 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leung, Y., Wu, W.Z., Zhang, W.X.: Knowledge acquisition in incomplete information systems: a rough set approach. Eur. J. Oper. Res. 168, 464–473 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wang, G.Y.: Extension of rough set under incomplete information systems. In: Proceeding of the 11th IEEE International Conference on Fuzzy Systems, pp. 1098–1103 (2002)Google Scholar
  17. 17.
    Grzymala–Busse, J.W.: Characteristic relations for incomplete data: a generalization of the indiscernibility relation. In: Proceeding of the Third International Conference on Rough Sets and Current Trends in Computing, pp. 244–253 (2004)Google Scholar
  18. 18.
    Grzymała-Busse, J.W.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Wu, W.Z., Zhang, W.X., Li, H.Z.: Knowledge acquisition in incomplete fuzzy information systems via the rough set approach. Expert Syst. 20, 280–286 (2003)CrossRefGoogle Scholar
  20. 20.
    Yang, X.B., Yang, J.Y., Wu, C., Yu, D.J.: Dominance–based rough set approach and knowledge reductions in incomplete ordered information system. Inform. Sci. 178, 1219–1234 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shao, M.W., Zhang, W.X.: Dominance relation and rules in an incomplete ordered information system. Int. J. Intell. Syst. 20, 13–27 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Comput. Intell. 17, 545–566 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Proceeding of New Directions in Rough Sets, Data Mining and Granular–Soft Computing, pp. 73–82 (1999)Google Scholar
  24. 24.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–208 (1990)CrossRefzbMATHGoogle Scholar
  25. 25.
    Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T., Wang, X.Z.: On the generalization of fuzzy rough sets. IEEE T. Fuzzy Syst. 13, 343–361 (2005)CrossRefGoogle Scholar
  26. 26.
    Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Set. Syst. 100, 327–342 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bhatt, R.B., Gopal, M.: On the compact computational domain of fuzzy-rough sets. Pattern Recogn. Lett. 26, 1632–1640 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xibei Yang
    • 1
    • 2
    • 3
  • Huili Dou
    • 1
  1. 1.School of Computer Science and EngineeringJiangsu University of Science and TechnologyZhenjiangP.R. China
  2. 2.School of Computer Science and TechnologyNanjing University of Science and TechnologyNanjingP.R. China
  3. 3.Jiangsu Sunboon Information Technology Co., Ltd.WuxiP.R. China

Personalised recommendations