Fast Streaming 3D Level Set Segmentation on the GPU for Smooth Multi-phase Segmentation

  • Ojaswa Sharma
  • Qin Zhang
  • François Anton
  • Chandrajit Bajaj
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6750)


Level set method based segmentation provides an efficient tool for topological and geometrical shape handling, but it is slow due to high computational burden. In this work, we provide a framework for streaming computations on large volumetric images on the GPU. A streaming computational model allows processing large amounts of data with small memory footprint. Efficient transfer of data to and from the graphics hardware is performed via a memory manager. We show volumetric segmentation using a higher order, multi-phase level set method with speedups of the order of 5 times.


Segmentation graphics hardware GPU streaming computation level set multi-phase higher-order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo. vol. 1, pp. 705–708. Citeseer (2002)Google Scholar
  2. 2.
    Bajaj, C., Xu, G., Zhang, Q.: A higher order level set method with applications to smooth surface constructions. ICES report 06-18. Institute for Computational Engineering and Sciences, The University of Texas at Austin (2006)Google Scholar
  3. 3.
    Bajaj, C.L., Xu, G., Zhang, Q.: A fast variational method for the construction of resolution adaptive C 2-smooth molecular surfaces. Computer Methods in Applied Mechanics and Engineering 198(21-26), 1684–1690 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blelloch, G.E.: Prefix sums and their applications. Tech. Rep. CMU-CS-90-190, School of Computer Science, Carnegie Mellon University (November 1990)Google Scholar
  5. 5.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods, pp. 161–168 (2001)Google Scholar
  7. 7.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to parallel computing. Addison-Wesley, Reading (2003)zbMATHGoogle Scholar
  8. 8.
    Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31, 532–533 (1988)CrossRefGoogle Scholar
  9. 9.
    Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU Gems 3 (2007)Google Scholar
  10. 10.
    Krissian, K., Westin, C.F.: Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recognition Letters 26(10), 1532–1542 (2005)CrossRefGoogle Scholar
  11. 11.
    Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A streaming narrow-band algorithm: interactive computation and visualization of level sets. IEEE Transactions on Visualization and Computer Graphics 10(4), 422–433 (2004)CrossRefGoogle Scholar
  12. 12.
    Nvidia, C.: Compute Unified Device Architecture-programming guide version 2.0 (2009)Google Scholar
  13. 13.
    Osher, S., Fedkiw, R.P.: Level set methods and dynamic implicit surfaces. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Papandreou, G., Maragos, P.: Multigrid geometric active contour models. IEEE Transactions on Image Processing 16(1), 229 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sharma, O., Anton, F.: CUDA based level set method for 3D reconstruction of fishes from large acoustic data. In: International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 17 (2009)Google Scholar
  17. 17.
    Strzodka, R., Rumpf, M.: Level set segmentation in graphics hardware. In: Proc. IEEE International Conference on Image Processing, pp. 1103–1106 (2001)Google Scholar
  18. 18.
  19. 19.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Weickert, J., Romeny, B., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ojaswa Sharma
    • 1
  • Qin Zhang
    • 3
  • François Anton
    • 2
  • Chandrajit Bajaj
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.DTU InformaticsThe Technical University of DenmarkLyngbyDenmark
  3. 3.Computational Visualization CenterThe University of Texas at AustinAustinUSA

Personalised recommendations