Advertisement

On Multiplicatively Weighted Voronoi Diagrams for Lines in the Plane

  • Kira Vyatkina
  • Gill Barequet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6750)

Abstract

We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set L of n lines in the plane in O(n 2 logn) time and O(n 2) space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for n lines in the plane has a simple structure, and can be obtained in optimal Θ(n 2) time and space.

Keywords

Edge Event Voronoi Diagram Priority Queue Weighted Distance Active Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the Voronoi diagram of a convex polygon. In: Proc. 19th Annu. ACM Symp. on Theory of Computing STOC 1987, pp. 39–45. ACM, New York (1987)Google Scholar
  2. 2.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-Point site Voronoi diagrams. Discr. Appl. Math. 122(1-3), 37–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barequet, G., Vyatkina, K.: On Voronoi diagrams for lines in the plane. In: Proc. 9th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2009, pp. 159–168. IEEE-CS, Los Alamitos (2009)Google Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Boissonnat, J.-D., Yvinec, M.: Géométrie Algorithmique. Ediscience international, Paris (1995)Google Scholar
  8. 8.
    Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams of lines in 3-space under polyhedral convex distance functions. J. Algorithms 29(2), 238–255 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dickerson, M.T., Eppstein, D.: Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions). In: Proc. 25th ACM Symp. on Comp. Geom., pp. 92–93. ACM, New York (2009)Google Scholar
  10. 10.
    Felkel, P., Obdržálek, S.: Straight skeleton implementation. In: Proc. Spring Conf. on Computer Graphics, pp. 210–218 (1998)Google Scholar
  11. 11.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  13. 13.
    Hanniel, I., Barequet, G.: On the triangle-perimeter two-site Voronoi diagram. In: Proc. 6th Int. Symp. on Voronoi Diagrams, pp. 129–136. IEEE-CS, Los Alamitos (2009)Google Scholar
  14. 14.
    Koltun, V., Sharir, M.: 3-Dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester (2001)zbMATHGoogle Scholar
  16. 16.
    Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. Symp. Found. Comput. Sci., pp. 151–162 (1975)Google Scholar
  17. 17.
    Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Discr. Comput. Geom. 12, 327–345 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  19. 19.
    Vyatkina, K.: On constructing the Voronoi diagram for lines in the plane under a linear-function distance. In: Proc. 10th Int. Conf. on Comp. Sci. and its Appl. ICCSA 2010, pp. 92–100. IEEE-CS, Los Alamitos (2010)Google Scholar
  20. 20.
    Vyatkina, K., Barequet, G.: On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances. In: Proc. 7th Int. Symp. on Voronoi Diagrams, pp. 33–41. IEEE-CS, Los Alamitos (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kira Vyatkina
    • 1
  • Gill Barequet
    • 2
    • 3
  1. 1.Dept. of Mathematics and MechanicsSaint Petersburg State UniversitySt PetersburgRussia
  2. 2.Center for Graphics and Geometric Computing, Dept. of Computer ScienceThe Technion—Israel Institute of TechnologyHaifaIsrael
  3. 3.Dept. of Computer ScienceTufts UniversityMedfordUSA

Personalised recommendations