A Computational-Geometry Approach to Digital Image Contour Extraction

  • Minghui Jiang
  • Xiaojun Qi
  • Pedro J. Tejada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6750)


We present a simple method based on computational-geometry for extracting contours from digital images. Unlike traditional image processing methods, our proposed method first extracts a set of oriented feature points from the input images, then applies a sequence of geometric techniques, including clustering, linking, and simplification, to find contours among these points. Extensive experimental results on synthetic and natural images show that our method can effectively extract contours from both clean and noisy images. Experiments on the Berkeley Segmentation Dataset also show that our proposed computational-geometry method can be linked with any state-of-the-art pixel-based contour extraction algorithm to remove noise and close gaps without severely dropping the contour accuracy. Moreover, contours extracted by our method have a much more compact representation than contours obtained by traditional pixel-based methods. Such a compact representation allows more efficient extraction of shape features in subsequent computer vision and pattern recognition tasks.


contour extraction image processing computational geometry point linking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Asano, T., Brimkov, V.E., Barneva, R.P.: Some theoretical challenges in digital geometry: A perspective. Discrete Applied Mathematics 157, 3362–3371 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, X., Yang, X., Latecki, L.J.: Detection and recognition of contour parts based on shape similarity. Pattern Recognition 41, 2189–2199 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. In: Proceedings of the 8th Annual ACM Symposium on Theory of Computing, pp. 220–230 (1976)Google Scholar
  5. 5.
    Bespamyatnikh, S.N.: An optimal algorithm for closest pair maintenance. In: Proceedings of the 11th Annual Symposium on Computational Geometry, pp. 152–161 (1995)Google Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum numbers of line segments or minimum error. International Journal of Computational Geometry and Applications 6, 59–77 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dollár, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 1964–1971 (2006)Google Scholar
  9. 9.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A fast algorithm for approximating the detour of a polygonal chain. Computational Geometry: Theory and Applications 27, 123–134 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Elder, J.H., Goldberg, R.M.: Ecological statistics of Gestalt laws for the perceptual organization of contours. Journal of Vision 2, 324–353 (2002)CrossRefGoogle Scholar
  12. 12.
    Elder, J.H., Krupnik, A., Johnston, L.A.: Contour grouping with prior models. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 661–674 (2003)CrossRefGoogle Scholar
  13. 13.
    Elder, J.H., Zucker, S.W.: Computing contour closure. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 399–412. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Eu, D., Toussaint, G.T.: On approximating polygonal curves in two and three dimensions. CVGIP: Graphical Models and Image Processing 56, 231–246 (1994)Google Scholar
  15. 15.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)CrossRefGoogle Scholar
  16. 16.
    Felzenszwalb, P., McAllester, D.: A min-cover approach for finding salient curves. In: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), pp. 185–185 (2006)Google Scholar
  17. 17.
    Freeman, H.: Computer processing of line drawings. ACM Computing Surveys 6, 57–97 (1974)CrossRefzbMATHGoogle Scholar
  18. 18.
    Goodman, J.E., O’Rourke, J.: Handbook of Discrete and Computational Geometry, 2 ed. CRC Press, Boca Raton (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Goodrich, M.T., Tamassia, R.: Algorithm Design: Foundations, Analysis, and Internet Examples. John Wiley & Sons, Chichester (2002)zbMATHGoogle Scholar
  20. 20.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2008)Google Scholar
  21. 21.
    Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing 12, 231–236 (2003)zbMATHGoogle Scholar
  22. 22.
    Guy, G., Medioni, G.: Inferring global perceptual contours from local features. International Journal of Computer Vision 20, 113–133 (1996)CrossRefGoogle Scholar
  23. 23.
    Haris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7, 1684–1699 (1998)CrossRefGoogle Scholar
  24. 24.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms, Technical Report, Carnegie Mellon University, School of Computer Science (1997)Google Scholar
  25. 25.
    Hérault, L., Horaud, R.: Figure-ground discrimination: a combinatorial optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 899–914 (1993)CrossRefGoogle Scholar
  26. 26.
    Hunt, G.C., Nelson, R.C.: Lineal feature extraction by parallel stick growing. In: Proceedings of the Third International Workshop on Parallel Algorithms for Irregularly Structured Problems, pp. 171–182 (1996)Google Scholar
  27. 27.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)CrossRefGoogle Scholar
  28. 28.
    Huttenlocher, D., Olson, C.: Automatic target recognition by matching oriented edge pixels. IEEE Transactions on Image Processing 6, 103–113 (1997)CrossRefGoogle Scholar
  29. 29.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefzbMATHGoogle Scholar
  30. 30.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  31. 31.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace & Company, New York (1935)Google Scholar
  32. 32.
    Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical edge detection: learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 57–74 (2003)CrossRefGoogle Scholar
  33. 33.
    Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429 (2000)Google Scholar
  34. 34.
    Mahamud, S., Williams, L.R., Thornber, K.K., Xu, K.: Segmentation of multiple salient closed contours from real images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 433–444 (2003)CrossRefGoogle Scholar
  35. 35.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43, 7–27 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Mansouri, A., Malowany, A.S., Levine, M.D.: Line detection in digital pictures: A hypothesis prediction verification paradigm. Computer Vision, Graphics, and Image Processing 40, 95–114 (1987)CrossRefGoogle Scholar
  37. 37.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision (ICCV 2001), pp. 416–423 (2001)Google Scholar
  38. 38.
    Martin, D.R., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 530–549 (2004)CrossRefGoogle Scholar
  39. 39.
    Moore, G.A.: Automatic scanning and computer processes for the quantitative analysis of micrographs and equivalent subjects. Pattern Recognition: Pictorial Pattern Recognition 1, 275–326 (1969)Google Scholar
  40. 40.
    Nelson, R.C.: Finding line segments by stick growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 519–523 (1994)CrossRefGoogle Scholar
  41. 41.
    Nevatia, R., Babu, K.R.: Linear feature extraction and description. Computer Graphics and Image Processing 3, 257–269 (1980)CrossRefGoogle Scholar
  42. 42.
    Paparilow, G., Petkov, N.: Edge and line oriented contour detection: state of the art. Image and Vision Computing 29, 79–103 (2011)CrossRefGoogle Scholar
  43. 43.
    Pelli, D.G., Majaj, N.J., Raizman, N., Christian, C.J., Kim, E., Palomares, M.C.: Grouping in object recognition: The role of a Gestalt law in letter identification. Cognitive Neuropsychology 26, 36–49 (2009)CrossRefGoogle Scholar
  44. 44.
    Ren, M., Yang, J., Sun, H.: Tracing boundary contours in a binary image. Image and Vision Computing 20, 125–131 (2002)CrossRefGoogle Scholar
  45. 45.
    Ren, X.: Multi-scale improves boundary detection in natural images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 533–545. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. 46.
    Robinson, G.S.: Detection and coding of edges using directional masks. In: Proceedings SPIE Conference on Advances in Image Transmission Techniques, pp. 117–125 (1976)Google Scholar
  47. 47.
    Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: eigenvalues and eigenvectors. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1996), pp. 478–483 (1996)Google Scholar
  48. 48.
    Sha’ashua, A., Ullman, S.: Structural saliency: the detection of globally salient structures using a locally connected network. In: Second International Conference on Computer Vision (ICCV 1988), pp. 321–327 (1988)Google Scholar
  49. 49.
    Sobel, I.E.: Camera models and machine perception, Ph.D. dissertation, Stanford University, CA, USA (1970)Google Scholar
  50. 50.
    Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1270–1281 (2008)CrossRefGoogle Scholar
  51. 51.
    Stahl, J.S., Oliver, K., Wang, S.: Open boundary capable edge grouping with feature maps. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2008), pp. 1–8 (2008)Google Scholar
  52. 52.
    Stahl, J.S., Wang, S.: Convex grouping combining boundary and region information. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), pp. 946–953 (2005)Google Scholar
  53. 53.
    Tejada, P.J., Qi, X., Jiang, M.: Computational geometry of contour extraction. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG 2009), pp. 25–28 (2009)Google Scholar
  54. 54.
    Toussaint, G.T.: Computational geometry and computer vision. Contemporary Mathematics 119, 213–224 (1991)CrossRefzbMATHGoogle Scholar
  55. 55.
    Wang, S., Ge, F., Liu, T.: Evaluating edge detection through boundary detection. EURASIP Journal on Applied Signal Processing 2006, 1–15 (2006)Google Scholar
  56. 56.
    Wang, S., Kubota, T., Siskind, J.M., Wang, J.: Salient closed boundary extraction with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 546–561 (2005)CrossRefGoogle Scholar
  57. 57.
    Wang, S., Siskind, J.M.: Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 675–690 (2003)CrossRefGoogle Scholar
  58. 58.
    Williams, L.R., Jacobs, D.W.: Stochastic completion fields: a neural model of illusory contour shape and salience. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV 1995), pp. 408–415 (1995)Google Scholar
  59. 59.
    Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. International Journal of Computer Vision 34, 81–96 (1999)CrossRefGoogle Scholar
  60. 60.
    Zhu, Q., Song, G., Shi, J.: Untangling cycles for contour grouping. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007), pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Minghui Jiang
    • 1
  • Xiaojun Qi
    • 1
  • Pedro J. Tejada
    • 1
  1. 1.Department of Computer ScienceUtah State UniversityLoganUSA

Personalised recommendations