Skip to main content

Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection for Examination Timetabling Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6831))

Abstract

Artificial Bee Colony (ABC) is a population-based algorithm that employed the natural metaphors, based on foraging behavior of honey bee swarm. In ABC algorithm, there are three categories of bees. Employed bees select a random solution and apply a random neighborhood structure (exploration process), onlooker bees choose a food source depending on a selection strategy (exploitation process), and scout bees involves to search for new food sources (scouting process). In this paper, firstly we introduce a disruptive selection strategy for onlooker bees, to improve the diversity of the population and the premature convergence, and also a local search (i.e. simulated annealing) is introduced, in order to attain a balance between exploration and exploitation processes. Furthermore, a self adaptive strategy for selecting neighborhood structures is added to further enhance the local intensification capability. Experimental results show that the hybrid ABC with disruptive selection strategy outperforms the ABC algorithm alone when tested on examination timetabling problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  2. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja-Orlin’s large neighbourhood search approach for examination timetabling. OR Spectrum 29(2), 351–372 (2007)

    Article  MATH  Google Scholar 

  3. Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A time-predefined local search approach to exam timetabling problem. IIE Transactions 36(6), 509–528 (2004)

    Article  Google Scholar 

  4. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Carter, M.W., Laporte, G.: Examination Timetabling: Algorithmic Strategies and Applications. Journal of the Operational Research Society 47, 373–383 (1996)

    Article  Google Scholar 

  6. Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Operations Research 34(2), 193–202 (1986)

    Article  MathSciNet  Google Scholar 

  7. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30(1), 167–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G.: A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling 12, 55–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abdullah, S., Turabeih, H., McCollum, B.: A hybridization of electromagnetic like mechanism and great deluge for examination timetabling problems. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 60–72. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Bao, L., Zeng, J.: Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm. HIS 1, 411–416 (2009)

    Google Scholar 

  11. Abdullah, S., Burke, E.K., McCollum, B.: Using a Randomised Iterative Improvement Algorithm with Composite Neighbourhood Structures for University Course Timetabling. In: Metaheuristics: Progress in complex systems optimization. Operations Research / Computer Science Interfaces Series, Ch. 8. Springer, Heidelberg (2007) ISBN: 978-0-387-719191

    Google Scholar 

  12. Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Bonabeau.Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  13. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute 346(4), 328–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karaboga, N., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)

    Article  Google Scholar 

  15. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation (2009) doi:10.1016/j.amc.2009.03.90

    Google Scholar 

  16. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Erciyes University, Turkey (2005)

    Google Scholar 

  17. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, F., Li, J., Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Computers and Structures 87, 861–870 (2009)

    Article  Google Scholar 

  19. Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Applied Soft Computing 9, 625–631 (2009)

    Article  Google Scholar 

  20. Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local search methods for examination timetabling. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) The International Conference on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK, June 6-10, pp. 334–337 (2006)

    Google Scholar 

  21. Pan, Tasgetiren, Q.-K., Suganthan, M.F., N., P., Chua, T.J.: A Discrete Artificial Bee Colony Algorithm for the Lot-streaming Flow Shop Scheduling Problem, Information Sciences. Elsevier, Netherlands (2010) (in press)

    Google Scholar 

  22. Burke, Eckersley, E.K., J. A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. European Journal of Operation Research 206(1), 46–53 (2010)

    Google Scholar 

  23. Yang, Y., Petrovic, S.: A novel similarity measure for heuristic selection in examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alzaqebah, M., Abdullah, S. (2011). Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection for Examination Timetabling Problems. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22616-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22616-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22615-1

  • Online ISBN: 978-3-642-22616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics