Skip to main content

On the Number of Solutions of the Discretizable Molecular Distance Geometry Problem

  • Conference paper
Book cover Combinatorial Optimization and Applications (COCOA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6831))

Abstract

The Discretizable Molecular Distance Geometry Problem is a subset of instances of the distance geometry problem that can be solved by a combinatorial algorithm called “Branch-and-Prune”. It was observed empirically that the number of solutions of YES instances is always a power of two. We perform an extensive theoretical analysis of the number of solutions for these instances and we prove that this number is a power of two with probability one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular distance geometry problem. In: Pintér, J. (ed.) Global Optimization: Scientific and Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

    Chapter  Google Scholar 

  2. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood search with smoothing for the molecular distance geometry problem. Journal of Global Optimization 43, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  4. Huang, H.X., Liang, Z.A., Pardalos, P.: Some properties for the Euclidean distance matrix and positive semidefinite matrix completion problems. Journal of Global Optimization 25, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM Journal on Optimization 5, 835–857 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. IEEE Infocom Proceedings, 2673–2684 (2004)

    Google Scholar 

  7. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM Journal on Optimization 20, 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gunther, H.: NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry. Wiley, New York (1995)

    Google Scholar 

  9. Schlick, T.: Molecular modelling and simulation: an interdisciplinary guide. Springer, New York (2002)

    Book  MATH  Google Scholar 

  10. Santana, R., Larrañaga, P., Lozano, J.: Combining variable neighbourhood search and estimation of distribution algorithms in the protein side chain placement problem. Journal of Heuristics 14, 519–547 (2008)

    Article  MATH  Google Scholar 

  11. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete approaches for solving molecular distance geometry problems using NMR data. International Journal of Computational Biosciences 1(1), 88–94 (2010)

    Google Scholar 

  12. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Computational Optimization and Applications doi: 10.1007/s10589-011-9402-6

    Google Scholar 

  13. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. International Transactions in Operational Research 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. To appear in Optimization Letters

    Google Scholar 

  15. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optimization Letters doi: 10.1007/s11590-011-0302-6

    Google Scholar 

  16. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. Journal of Global Optimization 50, 329–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. International Transactions in Operational Research 18, 33–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. European Journal of Operational Research (accepted / invited survey)

    Google Scholar 

  19. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  20. Connelly, R.: Generic global rigidity. Discrete Computational Geometry 33, 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brady, T., Watt, C.: On products of Euclidean reflections. American Mathematical Monthly 113, 826–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Technical Report q-bio/0608012, arXiv (2006)

    Google Scholar 

  23. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. Journal of Global Optimization 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coope, I.: Reliable computation of the points of intersection of n spheres in ℝn. Australian and New Zealand Industrial and Applied Mathematics Journal 42, C461–C477 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A. (2011). On the Number of Solutions of the Discretizable Molecular Distance Geometry Problem. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22616-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22616-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22615-1

  • Online ISBN: 978-3-642-22616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics