Skip to main content

ε –Pareto Dominance Based Multi-objective Optimization to Workflow Grid Scheduling

  • Conference paper
Contemporary Computing (IC3 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 168))

Included in the following conference series:

  • 1227 Accesses

Abstract

Grid facilitates global computing infrastructure for user to consume the services over the network. To optimize the workflow grid execution, a robust multi-objective scheduling algorithm is needed. In this paper, we considered two conflicting objectives like execution time (makespan) and total cost. We propose a multi-objective scheduling algorithm, using ε –MOEA approach based on evolutionary computing paradigm. Simulation results show that the proposed algorithm generates multiple scheduling solutions near the Pareto optimal front with uniform spacing and better convergence in small computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  2. Braun, T., Siegal, H., Beck, N.: A comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel and Distributed Computing 61, 810–837 (2001)

    Article  Google Scholar 

  3. Wang, L., Siegel, H., Roychowdhury, V., Maciejewski, A.: Task Matching and Scheduling in Heterogeneous Computing Environments using a Genetic-Algorithm-Based Approach. Journal of Parallel Distributed Computing 47, 9–22 (1997)

    Article  Google Scholar 

  4. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of Scientific Workflows in the SKALON Grid Environment. SIGMOD Rec., 34, 56–62 (2005)

    Article  Google Scholar 

  5. Wieczorek, M., Podlipning, S., Prodan, R., Fahringer, T.: Bi-criteria Scheduling of Scientific Workflows for the Grid. IEEE, Los Alamitos (2008) 978-0-7675-3156-4/08

    Book  Google Scholar 

  6. Yu, J., Buyya, R.: Scheduling Scientific Workflow Applications with Deadline and Budget Constraints using Genetic Algorithms. Scientific Programming 14, 217–230 (2006)

    Article  Google Scholar 

  7. Tsiakkouri, E., Sakellariou, R., Zhao, H., Dikaiakos, M.: Scheduling Workflows with Budget Constraints. In: CoreGRID Integration Workshop, Pisa, Italy, pp. 347–357 (2005)

    Google Scholar 

  8. Haluk, T., Hariri, S., Wu, M.: Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and Distributed Systems 13, 260–274 (2002)

    Article  Google Scholar 

  9. Prodan, R., Fahringer, T.: Dynamic scheduling of Scientific Workflow Applications on the Grid: A case study. In: SAC 2005, pp. 687–694. ACM, New York (2005)

    Chapter  Google Scholar 

  10. Yu, J., Kirley, M., Buyya, R.: Multi-objective Planning for Workflow Execution on Grids. In: Proceedings of the 8th IEEE/ACM International conference on Grid Computing (2007), ISBN:978-1-4244-1559-5, doi:10.1109/GRID.2007.4354110

    Google Scholar 

  11. Talukder, A., Kirley, M., Buyya, R.: Multiobjective Differential Evolution for Scheduling Workflow Applications on Global Grids. John Wiley & Sons, Ltd, Chichester (2009), doi:10.1002/cpe.1417

    Google Scholar 

  12. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley & Sons, England (2001)

    MATH  Google Scholar 

  13. Deb, K., Pratap, A., Aggarwal, S., Meyarivan, T.: A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 553–562. Springer, Heidelberg (2000)

    Google Scholar 

  14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K.C., Tshalis, D.T., Periaux, J., Papailion, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2001)

    Google Scholar 

  15. Knowles, J., Corne, D.: The Pareto Archive Evolution Strategy: A New Baseline Algorithm for Multi-Objective Optimization. In: The Congress on Evolutionary Computation, pp. 98- 105 (1999)

    Google Scholar 

  16. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report Number: 2003002, Indian Institute of Technology, Kanpur, India (2003)

    Google Scholar 

  17. Camelo, M., Donoso, Y., Castro, H.: A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms. In: Applied Mathematics and Informatics (2010) ISBN: 978-960-474-260-8

    Google Scholar 

  18. Grosan, C., Abraham, A., Helvik, B.: Multiobjective Evolutionary Algorithms for Scheduling Jobs on Computational Grids. In: International Conference on Applied Computing, pp. 459-463, Salamanca, Spain (2007) ISBN 978-972-8924-30-0

    Google Scholar 

  19. Dogan, A., Ozguner, F.: Biobjective Scheduling Algorithms for Execution Time-Reliability trade-off in Heterogeneous Computing Systems. Comput. J. 48(3), 300–314 (2005)

    Article  Google Scholar 

  20. Buyya, R.: GridSim: A Toolkit for Modeling and Simulation of Grid Resource Management and Scheduling, http://www.buyya.com/gridsim

  21. Deb, K., Jain, S.: Running Performance Metrics for Evolutionary Multi-objective Optimization. In: Simulated Evolution and Learning (SEAL 2002), pp. 13–20 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garg, R., Singh, D. (2011). ε –Pareto Dominance Based Multi-objective Optimization to Workflow Grid Scheduling. In: Aluru, S., et al. Contemporary Computing. IC3 2011. Communications in Computer and Information Science, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22606-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22606-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22605-2

  • Online ISBN: 978-3-642-22606-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics