Skip to main content

Improving Hybrid Cryptosystems with DNA Steganography

  • Conference paper
Book cover Digital Enterprise and Information Systems (DEIS 2011)

Abstract

There exists a big demand for secure electronic communications while the expertise level of attackers increases rapidly and that causes even bigger demands and needs for an extreme secure connection. An ideal security protocol should always be protecting the security of connections in many aspects, and leaves no trapdoor for the attackers. Nowadays, one of the popular cryptography protocols is hybrid cryptosystem that uses symmetric and public key cryptography to change secret message. In available cryptography protocol attackers are always aware of transmission of sensitive data. Even noninterested attackers can get interested to break the ciphertext out of curiosity and challenge, when suddenly catches some scrambled data over the network. In this paper we discuss about the disadvantages of asymmetric algorithms in cryptography protocol. Furthermore, this paper proposes new cryptography protocol based on DNA steganography to reduce the usage of public cryptography to exchange session key. In this protocol session key between sender and receiver is hidden by DNA data hiding technique. Therefore, the attackers are not aware of transmission of session key through unsecure channel. Finally, the strength point of the DNA steganography is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willett, M.: Cryptography old and new. Science Direct, Computers & Security, 177–186 (1982)

    Google Scholar 

  2. Lin, H.S.: Cryptography and Public Policy. Journal of Government Information, 135–148 (1998)

    Google Scholar 

  3. Alia, M.A., Yahya, A.: Public–Key Steganography Based on Matching Method. European Journal of Scientific Research, 223–231 (2010)

    Google Scholar 

  4. Schneier, B.: Applied Cryptography. John Wiley & Sons, New York (1996)

    MATH  Google Scholar 

  5. Kumar, S., Wollinger, T.: Fundamentals of Symmetric Cryptography. Embedded Security in Cars, 125–143 (2006)

    Google Scholar 

  6. Burke, J., McDonald, J., Austin, T.: Architectural support for fast symmetric-key cryptography. In: Architectural Support for Programming Languages and Operating Systems. Association of Computing Machinery (2000)

    Google Scholar 

  7. Mohapatra, P.K.: Public-Key Cryptography, Crossroads (2000)

    Google Scholar 

  8. Knudsen, L.R.: Block ciphers-analysis, design, applications, Doctor Philosohy, Aarhus University (1994)

    Google Scholar 

  9. Stinson, D.: Cryptography: Theory and Practice (discrete mathematics and its applications). CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  10. de Canniere, C., Biryukov, A., Preneel, B.: An introduction to Block Cipher Cryptanalysis, pp. 346–356 (2006)

    Google Scholar 

  11. Vignesh, R.S., Sudharssun, S., Kumar, K.J.J.: Limitations of quantum & the versatility of classical cryptography: a comparative study. Environmental and Computer Science, 333–337 (2009)

    Google Scholar 

  12. Chaeikar, S., Razak, S., Honarbakhsh, S., Zeidanloo, H., Zamani, M., Jaryani, F.: Interpretative Key Management (IKM), A Novel Framework. Computer Research and Development, 265–269 (2010)

    Google Scholar 

  13. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Information Theory, 644–654 (1976)

    Google Scholar 

  14. Tzeng, W.G.: Common modulus and chosen-message attacks on public-key schemes with linear recurrence relations. Information Processing Letters, 153–156 (1999)

    Google Scholar 

  15. Izmerly, O., Mor, T.: Chosen ciphertext attacks on lattice-based public key encryption and modern (non-quantum) cryptography in a quantum environment. Theoretical Computer Science, 308–323 (2006)

    Google Scholar 

  16. Aboud, S.J.: An efficient method for attack RSA scheme. IEEE Applications of Digital Information and Web Technologies, 587–591 (2009)

    Google Scholar 

  17. Rivest, R.L., Shamir, A.: How to Expose an Eavesdropper. Communications of the ACM, 393–395 (1984)

    Google Scholar 

  18. Bellovin, S.M., Merritt, M.: An attack on the Interlock Protocol when used for authentication. IEEE Information Theory, 273–275 (1994)

    Google Scholar 

  19. Johnson, N.F., Jajodia, S.: Exploring Steganography: Seeing the Unseen. IEEE, 26–34 (1998)

    Google Scholar 

  20. Lenti, j.: Steganographic Methods. Periodica Polytechnica, 249–258 (2000)

    Google Scholar 

  21. Fridrich, J., Du, R.: Secure Steganographic Methods for Palette Images. LNCS, pp. 47–60. Springer, Heidelberg (2000)

    Google Scholar 

  22. Phoenix, S.: Cryptography, trusted third parties and escrow. Bt Technol. Journal 32, 45–62 (1997)

    Article  Google Scholar 

  23. Watson, J., Crick, F.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. JAMA (1993)

    Google Scholar 

  24. Leier, A., Richter, C., Banzhaf, W., Rauhe, H.: Cryptography with DNA binary strands. BioSystems 57, 13–22 (2000)

    Article  Google Scholar 

  25. Manacher, G.: A new linear-time on-line algorithm for finding the smallest initial palindrome of the string. Journal of the ACM 22, 346–351 (1975)

    Article  MATH  Google Scholar 

  26. Shimanovsky, B., Feng, J., Potkonjak, M.: Hiding Data in DNA. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 373–386. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Shiu, H., Ng, K., Fnag, J.F., Lee, R., Huang, C.: Data hiding methods based upon DNA sequences. Information Sciences 180, 2196–2208 (2010)

    Article  MathSciNet  Google Scholar 

  28. Najaftorkaman, M., Shanmuham, B., Abbasy, M., Ordi, A.: Hybrid Cryptosystem with DNA Technology. In: International Conference on Information Security and Artificial Intelligence, vol. 1, pp. 1460–1464 (2010)

    Google Scholar 

  29. European Bioinformatics Institute, http://www.ebi.ac.uk/

  30. Cheddad, A., Condell, J., Curran, K., Kevitt, P.M.: Digital image steganography: Survey and analysis of current methods. Signal Processing 90, 727–752 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Najaf Torkaman, M.R., Nikfard, P., Sadat Kazazi, N., Abbasy, M.R., Tabatabaiee, S.F. (2011). Improving Hybrid Cryptosystems with DNA Steganography. In: Ariwa, E., El-Qawasmeh, E. (eds) Digital Enterprise and Information Systems. DEIS 2011. Communications in Computer and Information Science, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22603-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22603-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22602-1

  • Online ISBN: 978-3-642-22603-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics