Skip to main content

State Complexity of Projected Languages

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6808))

Included in the following conference series:

Abstract

This paper discusses the state complexity of projected regular languages represented by incomplete deterministic finite automata. It is shown that the known upper bound is reachable only by automata with one unobservable transition, that is, a transition labeled with a symbol removed by the projection. The present paper improves this upper bound by considering the structure of the automaton. It also proves that the new bounds are tight, considers the case of finite languages, and presents several open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2nd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–158 (1986); Errata: Theoret. Comput. Sci. 302, 497–498 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Feng, L., Wonham, W.M.: Computationally efficient supervisor design: Abstraction and modularity. In: Proc. of WODES 2006, Ann Arbor, USA, pp. 3–8 (2006)

    Google Scholar 

  4. Feng, L., Wonham, W.M.: On the computation of natural observers in discrete-event systems. Discrete Event Dyn. Syst. 20, 63–102 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control Optim. 48(3), 1914–1938 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205(11), 1652–1670 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hill, R.C., Tilbury, D.M.: Modular supervisory control of discrete event systems with abstraction and incremental hierarchical construction. In: Proc. of WODES 2006, Ann Arbor, USA, pp. 399–406 (2006)

    Google Scholar 

  8. Holzer, M., Jakobi, S., Kutrib, M.: The magic number problem for subregular language families. In: Proc. of DCFS 2010. EPTCS, vol. 31, pp. 110–119 (2010)

    Google Scholar 

  9. Holzer, M., Kutrib, M.: Descriptional complexity – an introductory survey. In: Scientific Applications of Language Methods, vol. 2, Imperial College Press, London (2010)

    Chapter  Google Scholar 

  10. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet. IJFCS 19, 617–631 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008), http://im3.saske.sk/~jiraskov/star/

    Chapter  Google Scholar 

  15. Jirásková, G.: Magic numbers and ternary alphabet. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 300–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of discrete-event systems using a coordination scheme. CoRR 1007.2707 (2010), http://arxiv.org/abs/1007.2707

  17. Komenda, J., Masopust, T., Schuppen, J.H.v.: Synthesis of safe sublanguages satisfying global specification using coordination scheme for discrete-event systems. In: Proc. of WODES 2010, Berlin, Germany, pp. 436–441 (2010)

    Google Scholar 

  18. Komenda, J., van Schuppen, J.H.: Coordination control of discrete event systems. In: Proc. of WODES 2008, Göteborg, Sweden, pp. 9–15 (2008)

    Google Scholar 

  19. Lupanov, O.B.: Über den vergleich zweier typen endlicher quellen. Probl. Kybernetik 6, 328–335 (1966), translation from Probl. Kibernetiki 9, 321–326 (1963)

    MATH  Google Scholar 

  20. Lyubich, Y.I.: Estimates for optimal determinization of nondeterministic autonomous automata. Sib. Matemat. Zhu. 5, 337–355 (1964) (in Russian)

    MATH  Google Scholar 

  21. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. of FOCS 1971, pp. 188–191. IEEE, Los Alamitos (1971)

    Google Scholar 

  22. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20(10), 1211–1214 (1971)

    Article  MATH  Google Scholar 

  23. Pena, P.N., Cury, J.E.R., Lafortune, S.: Polynomial-time verification of the observer property in abstractions. In: Proc. of ACC 2008, Seattle, USA, pp. 465–470 (2008)

    Google Scholar 

  24. Pena, P.N., Cury, J.E.R., Malik, R., Lafortune, S.: Efficient computation of observer projections using OP-verifiers. In: Proc. WODES 2010, pp. 416–421 (2010)

    Google Scholar 

  25. Salomaa, K.: NFA to DFA conversion for finite languages over a k-letter alphabet. Personal Communication (2011)

    Google Scholar 

  26. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages. In: Raymond, D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 149–158. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  28. Szabari, A.: Descriptional Complexity of Regular Languages. Ph.D. thesis, Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia (2010)

    Google Scholar 

  29. Wong, K.: On the complexity of projections of discrete-event systems. In: Proc. of WODES 1998, Cagliari, Italy, pp. 201–206 (1998)

    Google Scholar 

  30. Wonham, W.M.: Supervisory control of discrete-event systems, Lecture Notes, Dept. of Electrical and Computer Engineering, Univ. of Toronto, Canada (2009)

    Google Scholar 

  31. Yu, S.: Regular languages. In: Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jirásková, G., Masopust, T. (2011). State Complexity of Projected Languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2011. Lecture Notes in Computer Science, vol 6808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22600-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22600-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22599-4

  • Online ISBN: 978-3-642-22600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics