Skip to main content

On the Number of Components and Clusters of Non-returning Parallel Communicating Grammar Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6808))

Abstract

In this paper, we study the size complexity of non-returning parallel communicating grammar systems. First we consider the problem of determining the minimal number of components necessary to generate all recursively enumerable languages. We present a construction which improves the currently known best bounds of seven (with three predefined clusters) and six (in the non-clustered case) to five, in both cases (having four clusters in the clustered variant). We also show that in the case of unary languages four components are sufficient. Then, by defining systems with dynamical clusters, we investigate the minimal number of different query symbols necessary to obtain computational completeness. We prove that for this purpose three dynamical clusters (which means two different query symbols) are sufficient in general, which (although the number of components is higher) can also be interpreted as an improvement in the number of necessary clusters when compared to the case of predefined clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ter Beek, M.H.: Teams in grammar systems: hybridity and weak rewriting. Acta Cybernetica 12(4), 427–444 (1996)

    MATH  MathSciNet  Google Scholar 

  2. ter Beek, M.H.: Teams in grammar systems: sub-context-free cases. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 197–216. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Topics in Computer Mathematics, vol. 5. Gordon and Breach Science Publishers, Yverdon (1994)

    MATH  Google Scholar 

  4. Csuhaj-Varjú, E., Mitrana, V.: Dynamical Teams in Eco-Grammar Systems. Fundamenta Informaticae 44(1-2), 83–94 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: PC grammar systems with clusters of components. International Journal of Foundations of Computer Science 22(1), 203–212 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Csuhaj-Varjú, E., Păun, G., Vaszil, G.: PC grammar systems with five context-free components generate all recursively enumerable languages. Theoretical Computer Science 299(1-3), 785–794 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Csuhaj-Varjú, E., Vaszil, G.: On the size complexity of non-returning context-free PC grammar systems. In: Dassow, J., Pighizzini, G., Truthe, B. (eds.) Proceedings Eleventh International Workshop on Descriptional Complexity of Formal Systems, Electronic Proceedings in Theoretical Computer Science, vol. 3, pp. 91–101 (2009)

    Google Scholar 

  8. Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, vol. II, ch. 4, pp. 155–213. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Fischer, P.C.: Turing machines with restricted memory access. Information and Control 9, 364–379 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kari, L., Mateescu, A., Păun, G., Salomaa, A.: Teams in cooperating grammar systems. Journal of Experimental and Theoretical Artificial Intelligence 7, 347–359 (1995)

    Article  MATH  Google Scholar 

  11. Lázár, K., Csuhaj-Varjú, E., Lőrincz, A., Vaszil, G.: Dynamically formed Clusters of Agents in Eco-grammar Systems. International Journal of Foundations of Computer Science 20(2), 293–311 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mateescu, A., Mitrana, V., Salomaa, A.: Dynamical teams of cooperating grammar systems. Analele Universitatii Bucuresti. Matematica Inform. 42(43), 3–14 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  14. Păun, G., Rozenberg, G.: Prescribed teams of grammars. Acta Informatica 31(6), 525–537 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Păun, G., Sântean, L.: Parallel communicating grammar systems: The regular case. Annals of the University of Bucharest, Mathematics-Informatics Series 38(2), 55–63 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Csuhaj-Varjú, E., Vaszil, G. (2011). On the Number of Components and Clusters of Non-returning Parallel Communicating Grammar Systems. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2011. Lecture Notes in Computer Science, vol 6808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22600-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22600-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22599-4

  • Online ISBN: 978-3-642-22600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics