Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 542 Accesses

Abstract

A protein is a polypeptide chain consisting of a sequence of units or “residues”, which are amino acids chosen from a pool of 20. Proteins are synthesized as unfolded polypeptide chains and they fold after synthesis in order to become active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen, C. (1973). Principles that govern the folding of protein chains. Science, 181, 223–230.

    Article  ADS  Google Scholar 

  2. Banavar, J., & Maritan, A. (2007). Physics of proteins. Annual Review of Biophysics & Biomolecular Structure, 36, 261–280.

    Article  Google Scholar 

  3. Protein data bank. (2010). http://www.rcsb.org

  4. Floudas, C., Fung, H., McAllister, S., Monnigmann, M., & Rajgaria, R. (2006). Advances in protein structure prediction and de novo protein design: a review. Chemical Engineering Science, 61, 966–988.

    Article  Google Scholar 

  5. Crick, F. (1988). What mad pursuit: a personal view of science. New York: Basic Books.

    Google Scholar 

  6. Boczko, E., & Brooks, C. (1995). First-principles calculation of the folding free-energy of a 3-helix bundle protein. Science 296, 393–396.

    Article  ADS  Google Scholar 

  7. Camacho, C., & Thirumalai, D. (1993). Kinetics and thermodynamics of folding in model proteins. Proceedings of the national academy of sciences of the United States of America 90, 6369–6372.

    Article  ADS  Google Scholar 

  8. Garcia, A., & Onuchic, J. (2003). Folding a protein in a computer: an atomic description of the folding/unfolding of protein. Proceedings of the national academy of sciences of the United States of America, 100, 13898–13903.

    Article  ADS  Google Scholar 

  9. Pande, V., Baker, I., Chapman, J., Elmer, S., & Khalig, S. (2003). Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers 68, 91–109.

    Article  Google Scholar 

  10. Alm, E., & Baker, D. (1999). Physics of proteins. Proceedings of the national academy of sciences of the United States of America, 96, 11305–11310.

    Article  ADS  Google Scholar 

  11. Henry, E., & Eaton, W. (2004). Combinatorial modeling of protein folding kinetics: free energy profiles and rates. Chemical Physics, 307, 163–185.

    Article  ADS  Google Scholar 

  12. Munoz, V. (2002). Thermodynamics and kinetics of downhill protein folding investigated with a simple statistical mechanical model. International Journal of Quantum Chemistry, 90, 1522–1528.

    Article  Google Scholar 

  13. Muñoz, V. (2007). Conformational dynamics and ensembles in protein folding. Annual Review of Biophysics & Biomolecular Structure, 36, 395–412.

    Article  ADS  Google Scholar 

  14. Yakubovich A., Solov’yov I., Solov’yov A., & Greiner W. (2006). Conformational changes in glycine tri- and hexapeptide. The European Physical Journal D, 39, 23–34.

    Article  ADS  Google Scholar 

  15. Yakubovich, A., Solov’yov, I., Solov’yov, A., & Greiner, W. (2006). Conformations of glycine polypeptides. Khimicheskaya Fizika (Chemical Physics), 25, 11–23(in Russian).

    Google Scholar 

  16. Solov’yov, I., Yakubovich, A., Solov’yov, A., & Greiner, W. (2006). On the fragmentation of biomolecules: fragmentation of alanine dipeptide along the polypeptide chain. The Journal of Experimental and Theoretical Physics, 103, 463–471.

    Article  ADS  Google Scholar 

  17. Solov’yov, I., Yakubovich, A., Solov’yov, A., & Greiner, W. (2006). Ab initio study of alanine polypeptide chain twisting. Physical Review E, 73(1–10), 021916.

    Article  ADS  Google Scholar 

  18. Solov’yov, I., Yakubovich, A., Solov’yov, A., & Greiner, A. (2006). Potential energy surface for alanine polypeptide chains. Journal of Experimental and Theoretical Physics, 102, 314–326.

    Article  ADS  Google Scholar 

  19. Yakubovich, A., Solov’yov, I., Solov’yov, A., & Greiner, W. (2006). Phase transition in polypeptides: a step towards the understanding of protein folding. European Physical Journal D, 40, 363–367.

    Article  ADS  Google Scholar 

  20. Yakubovich, A., Solov’yov, I., Solov’yov, A., & Greiner, W. (2007). Ab initio description of phase transitions in finite bio- nano-systems. Europhysics News, 38, 10–10.

    Google Scholar 

  21. Andersen, L., & Bochenkova, A. (2009). The photophysics of isolated protein chromophores. European Physical Journal D, 51, 5–14.

    Article  ADS  Google Scholar 

  22. Shintake, T. (2008). Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons. Physical Review A, 78(1–9), 041906.

    ADS  Google Scholar 

  23. Pazera, T., & Sachs, A., (Eds.). (2009). DESY 2008. Wissenschaftlicher Jahresbericht des Forschungszentrums DESY. Deutsches Elektrinen-Synchrotron DESY.

    Google Scholar 

  24. Solov’yov, I., Yakubovich, A., Solov’yov, A., & Greiner, W. (2008) \(\alpha\)-helix\(\leftrightarrow\)random coil phase transition: analysis of ab initio theory predictions. European Physical Journal D, 46, 227–240.

    Article  ADS  Google Scholar 

  25. Yakubovich, A., Solov’yov, I., Solov’yov, A., & Greiner, W. (2008). Phase transitions in polypeptides: analysis of energy fluctuations. European Physical Journal D, 51, 25–31.

    Article  Google Scholar 

  26. Yakubovich, A., Solov’yov, A., & Greiner, W. (2010). Conformational changes in polypeptides and proteins. International Journal of Quantum Chemistry, 110, 257–269.

    Article  ADS  Google Scholar 

  27. Yakubovich, A., Solov’yov, A., & Greiner, W. (2009). Statistical mechanics model for protein folding. AIP Conference Proceedings, 1197, 186–200.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Yakubovich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yakubovich, A.V. (2011). Introduction. In: Theory of Phase Transitions in Polypeptides and Proteins. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22592-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22592-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22591-8

  • Online ISBN: 978-3-642-22592-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics