Skip to main content

Electrostatic Force Microscopy Characterization of Low Dimensional Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 48))

Abstract

The electrostatic potential profile is of great importance in nanoscale electronic devices. The effect of the random potential caused by dopants or other defects becomes an increasingly more important problem as device size continues to shrink and as devices exploiting quantum effects emerge. We review the past studies on the potential profile in semiconductor heterostructures by Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM), focusing on the technical aspects of the experiments. We then describe measurements of the spatial and temporal fluctuations of the electrostatic potential in an InP/InGaAs heterostructure sample by EFM and KPFM using frequency modulation mode atomic force microscopy (AFM). We also describe a new EFM technique capable of detecting charge with single-electron resolution and show that such techniques can be used for quantitative spectroscopic measurements of discrete electronic states such as those in quantum dots. Finally, we compare EFM and KPFM with two non-AFM-based scanning probe techniques with highly sensitive potentiometry and electrometry capability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Gaudreau, S. Studenikin, A. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 97(3), 36807 (2006). doi:10.1103/PhysRevLett.97.036807. URL http://link.aps.org/doi/10.1103/PhysRevLett.97.036807

    Google Scholar 

  2. M. Pioro-Ladrière, J. Davies, A. Long, A. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z. Wasilewski, S. Studenikin, Phys. Rev. B 72(11), 1 (2005). doi:10.1103/PhysRevB.72.115331. URL http://link.aps.org/doi/10.1103/PhysRevB.72.115331

  3. T. Itakura, Y. Tokura, Phys. Rev. B 67(19), 195320 (2003). doi:10.1103/PhysRevB.67.195320. URL http://link.aps.org/doi/10.1103/PhysRevB.67.195320

    Google Scholar 

  4. J. Bergli, Y.M. Galperin, B.L. Altshuler, New J. Phys. 11(2), 025002 (2009). doi:10.1088/1367-2630/11/2/025002. URL http://stacks.iop.org/1367-2630/11/i=2/a=025002?key=crossref.937cc0b57df62f086c4461484728f29d

  5. A. Asenov, A. Brown, J. Davies, S. Kaya, G. Slavcheva, IEEE Trans. Electron. Dev. 50(9), 1837 (2003). URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1224485

    Google Scholar 

  6. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Nat. Phys. 4(5), 377 (2008). doi:10.1038/nphys935. URL http://www.nature.com/doifinder/10.1038/nphys935

  7. E.P. Nordberg, G.A. Ten Eyck, H.L. Stalford, R.P. Muller, R.W. Young, K. Eng, L.A. Tracy, K.D. Childs, J.R. Wendt, R.K. Grubbs, J. Stevens, M.P. Lilly, M.A. Eriksson, M.S. Carroll, Phys. Rev. B 80(11), 115331 (2009). URL http://link.aps.org/abstract/PRB/v80/e115331

    Google Scholar 

  8. O. Makarovsky, A.G. Balanov, L. Eaves, A. Patanè, R.P. Campion, C.T. Foxon, R.J. Airey, Phys. Rev. B 81(3), 035323 (2010). doi:10.1103/PhysRevB.81.035323. URL http://prb.aps.org/abstract/PRB/v81/i3/e035323

    Google Scholar 

  9. T. Vančura, S. Kičin, T. Ihn, K. Ensslin, M. Bichler, W. Wegscheider, Appl. Phys. Lett. 83(13), 2602 (2003). URL http://link.aip.org/link/?APL/83/2602/1

    Google Scholar 

  10. R. Crook, C. Smith, S. Chorley, I. Farrer, H. Beere, D. Ritchie, Physica E 34(1–2), 686 (2006). URL http://linkinghub.elsevier.com/retrieve/pii/S1386947706002013

    Google Scholar 

  11. G. Valdrè, D. Moro, D. Lee, C.G. Smith, I. Farrer, D.A. Ritchie, R.T. Green, Nanotechnology 19(4), 45304 (2008). URL http://stacks.iop.org/0957-4484/19/045304

    Google Scholar 

  12. R. Ludeke, E. Gusev, J. Appl. Phys. 96(4), 2365 (2004). URL http://link.aip.org/link/JAPIAU/v96/i4/p2365/s1&Agg=doi

  13. J.M. Sturm, A.I. Zinine, H. Wormeester, B. Poelsema, R.G. Bankras, J. Holleman, J. Schmitz, J. Appl. Phys. 97(6), 63709 (2005). doi:10.1063/1.1870113. URL http://link.aip.org/link/JAPIAU/v97/i6/p063709/s1&Agg=doi

  14. J. Sturm, A. Zinine, H. Wormeester, R. Bankras, J. Holleman, J. Schmitz, B. Poelsema, Microelectron. Eng. 80, 78 (2005). URL http://linkinghub.elsevier.com/retrieve/pii/S016793170500153X

  15. S.S. Datta, D.R. Strachan, E.J. Mele, A.T.C. Johnson, Nano Lett. 9(1), 7 (2009). doi:10.1021/nl8009044. URL http://www.ncbi.nlm.nih.gov/pubmed/18613730

  16. Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9(10), 3430 (2009). doi:10.1021/nl901572a. URL http://www.ncbi.nlm.nih.gov/pubmed/19719145

    Google Scholar 

  17. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66(1), 1 (2011). doi:10.1016/j.surfrep.2010.10.001. URL http://dx.doi.org/10.1016/j.surfrep.2010.10.001

    Google Scholar 

  18. M.J. Yoo, T.A. Fulton, H.F. Hess, R.L. Willett, L.N. Dunkleberger, R.J. Chichester, L.N. Pfeiffer, K.W. West, Science 276(5312), 579 (1997). doi:10.1126/science.276.5312.579. URL http://www.sciencemag.org/cgi/doi/10.1126/science.276.5312.579

    Google Scholar 

  19. S.H. Tessmer, P.I. Glicofridis, R.C. Ashoori, L.S. Levitov, M.R. Melloch, Nature 392(6671), 51 (1998). doi:10.1038/32112. URL http://dx.doi.org/10.1038/32112

    Google Scholar 

  20. B.I. Halperin, Phys. Rev. B 25(4), 2185 (1982). doi:10.1103/PhysRevB.25.2185. URL http://link.aps.org/doi/10.1103/PhysRevB.25.2185

  21. J. Nixon, J. Davies, Phys. Rev. B 41(11), 7929 (1990). doi:10.1103/PhysRevB.41.7929. URL http://link.aps.org/doi/10.1103/PhysRevB.41.7929

    Google Scholar 

  22. K.L. McCormick, M. T. Woodside, M. Huang, P.L. McEuen, C. Duruoz, J. Harris Jr, Physica B 249–251, 79 (1998). doi:10.1016/S0921-4526(98)00071-4. URL http://linkinghub.elsevier.com/retrieve/pii/S0921452698000714

  23. K. McCormick, M. Woodside, M. Huang, M. Wu, P. McEuen, C. Duruoz, J. Harris, Phys. Rev. B 59(7), 4654 (1999). doi:10.1103/PhysRevB.59.4654. URL http://link.aps.org/doi/10.1103/PhysRevB.59.4654

    Google Scholar 

  24. P. Weitz, E. Ahlswede, J. Weis, K.V. Klitzing, K. Eberl, Appl. Surf. Sci. 157(4), 349 (2000). URL http://www.sciencedirect.com/science/article/B6THY-403790W-Y/2/45f769f959db7436330cd7e502094690

    Google Scholar 

  25. P. Weitz, E. Ahlswede, J. Weis, K.V. Klitzing, K. Eberl, Physica E 6(1–4), 247 (2000). URL http://www.sciencedirect.com/science/article/B6VMT-3YSY07V-23/2/190637d1d8c82dc273e9b72a66060d52

  26. M. Woodside, C. Vale, K. McCormick, PL, Physica E 6(1–4), 238 (2000). doi:10.1016/S1386-9477(99)00115-0. URL http://linkinghub.elsevier.com/retrieve/pii/S1386947799001150

  27. E. Ahlswede, P. Weitz, J. Weis, K.V. Klitzing, K. Eberl, Physica B 298(1–4), 562 (2001). URL http://www.sciencedirect.com/science/article/B6TVH-4344GH6-41/2/10e88fb8768479257fb665cc0e9d981c

    Google Scholar 

  28. F. Dahlem, E. Ahlswede, J. Weis, K. v. Klitzing, Phys. Rev. B 82(12), 121305(R) (2010). doi:10.1103/PhysRevB.82.121305. URL http://prb.aps.org/abstract/PRB/v82/i12/e121305

    Google Scholar 

  29. J.A. Hedberg, A. Lal, Y. Miyahara, P. Grutter, G. Gervais, M. Hilke, L. Pfeiffer, K.W. West, Appl. Phys. Lett. 97(14), 143107 (2010). doi:10.1063/1.3499293. URL http://link.aip.org/link/APPLAB/v97/i14/p143107/s1&Agg=doi

  30. B.D. Terris, J.E. Stern, D. Rugar, H.J. Mamin, Phys. Rev. Lett. 63(24), 2669 (1989). doi:10.1103/PhysRevLett.63.2669. URL http://link.aps.org/doi/10.1103/PhysRevLett.63.2669

    Google Scholar 

  31. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58(25), 2921 (1991). doi:10.1063/1.105227. URL http://link.aip.org/link/APPLAB/v58/i25/p2921/s1&Agg=doi

    Google Scholar 

  32. E. Ahlswede, J. Weis, K.V. Klitzing, K. Eberl, Physica E 12(1–4), 165 (2002). doi:10.1016/S1386-9477(01)00267-3.URL http://linkinghub.elsevier.com/retrieve/pii/S138694770100267373

  33. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69(2), 668 (1991). doi:10.1063/1.347347. URL http://link.aip.org/link/JAPIAU/v69/i2/p668/s1&Agg=doi

    Google Scholar 

  34. S. Kitamura, M. Iwatsuki, Appl. Phys. Lett. 72(24), 3154 (1998). doi:10.1063/1.121577. URL http://link.aip.org/link/APPLAB/v72/i24/p3154/s1&Agg=doi

    Google Scholar 

  35. U. Zerweck, C. Loppacher, T. Otto, S. Grafstrom, L.M. Eng, Phys. Rev. B 71(12), 125424 (2005). URL http://link.aps.org/abstract/PRB/v71/e125424

    Google Scholar 

  36. R. Crook, A.C. Graham, C.G. Smith, I. Farrer, H.E. Beere, D.A. Ritchie, Nature 424(6950), 751 (2003). doi:10.1038/nature01841. URL http://www.ncbi.nlm.nih.gov/pubmed/12917677

    Google Scholar 

  37. M. Roseman, P. Grutter, Rev. Sci. Instrum. 71(10), 3782 (2000). doi:10.1063/1.1290039. URL http://link.aip.org/link/RSINAK/v71/i10/p3782/s1&Agg=doi

  38. P. Poole, J. McCaffrey, R. Williams, J. Lefebvre, D. Chithrani, J. Vac. Sci. Technol. B 19, 1467 (2001). URL http://link.aip.org/link/?JVTBD9/19/1467/1

  39. J. Mertz, O. Marti, J. Mlynek, Appl. Phys. Lett. 62(19), 2344 (1993). doi:10.1063/1.109413. URL http://link.aip.org/link/APPLAB/v62/i19/p2344/s1&Agg=doi

    Google Scholar 

  40. B. Anczykowski, J. Cleveland, D. Krüger, V. Elings, H. Fuchs, Appl. Phys. A 66(7), S885 (1998). doi:10.1007/s003390051261. URL http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003390051261

  41. H. Hölscher, D. Ebeling, U.D. Schwarz, in Q-controlled Dynamic Force Microscopy in Air and Liquids. NanoScience and Technology (Springer, Berlin, 2007), pp. 75–97. doi:10.1007/978-3-540-37316-2. URL http://www.springerlink.com/content/u201221p217t262k/

  42. T. Sulchek, R. Hsieh, J.D. Adams, G.G. Yaralioglu, S.C. Minne, C.F. Quate, J.P. Cleveland, A. Atalar, D.M. Adderton, Appl. Phys. Lett. 76(11), 1473 (2000). doi:10.1063/1.126071. URL http://link.aip.org/link/APPLAB/v76/i11/p1473/s1&Agg=doi

    Google Scholar 

  43. S. Morita, R. Wiesendanger, E. Meyer (eds.), Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)

    Google Scholar 

  44. R. García, A. San Paulo, Phys. Rev. B 60(7), 4961 (1999). URL http://link.aps.org/doi/10.1103/PhysRevB.60.4961

    Google Scholar 

  45. L N Kantorovich et al., J. Phys.: Condens. Matter 12(6), 795 (2000). doi:10.1088/0953-8984/12/6/304. URL http://stacks.iop.org/0953-8984/12/i=6/a=304

    Google Scholar 

  46. S. Sadewasser, M. Lux-Steiner, Phys. Rev. Lett. 91(26), 1 (2003). doi:10.1103/PhysRevLett.91.266101. URL http://link.aps.org/doi/10.1103/PhysRevLett.91.266101

    Google Scholar 

  47. S.A. Burke, J.M. LeDue, Y. Miyahara, J.M. Topple, S. Fostner, P. Grutter, Nanotechnology 20(26), 264012 (2009). URL http://stacks.iop.org/0957-4484/20/264012

    Google Scholar 

  48. K. Okamoto, Y. Sugawara, S. Morita, Appl. Surf. Sci. 188(3–4), 381 (2002). URL http://linkinghub.elsevier.com/retrieve/pii/S0169433201009539

    Google Scholar 

  49. M. Lee, W. Lee, F.B. Prinz, Nanotechnology 17(15), 3728 (2006). doi:10.1088/0957-4484/17/ 15/019. URL http://stacks.iop.org/0957-4484/17/i=15/a=019?key=crossref.495ccf607fae35e6d68dc8dd61337e4a

    Google Scholar 

  50. J. Sturm, H. Wormeester, B. Poelsema, Surf. Sci. 601(19), 4598 (2007). doi:10.1016/j.susc. 2007.07.016. URL http://linkinghub.elsevier.com/retrieve/pii/S0039602807007911

    Google Scholar 

  51. L. Cockins, Y. Miyahara, P. Grutter, Phys. Rev. B 79(12), 121309 (2009). URL http://link.aps.org/abstract/PRB/v79/e121309

    Google Scholar 

  52. M.J. Deen, F. Pascal, J. Mater. Sci. Mater. Electron. 17(8), 549 (2006). URL http://www.springerlink.com/index/10.1007/s10854-006-0001-8

    Google Scholar 

  53. G. Dumitras, H. Riechert, H. Porteanu, F. Koch, Phys. Rev. B 66(20), 1 (2002). URL http://link.aps.org/doi/10.1103/PhysRevB.66.205324

    Google Scholar 

  54. D.C. Coffey, D.S. Ginger, Nat. Mater. 5, 735 (2006)

    Article  CAS  Google Scholar 

  55. L.E. Walther, E.V. Russell, N.E. Israeloff, H.A. Gomariz, Appl. Phys. Lett. 72(24), 3223 (1998). URL http://link.aip.org/link/?APL/72/3223/1

    Google Scholar 

  56. E.V. Russell, N.E. Israeloff, Nature 408(6813), 695 (2000). URL http://www.ncbi.nlm.nih.gov/pubmed/11130066

    Google Scholar 

  57. P.S. Crider, N.E. Israeloff, Nano Lett. 6(5), 887 (2006). URL http://pubs.acs.org/doi/abs/10.1021/nl060558q

  58. S.M. Yazdanian, J.A. Marohn, R.F. Loring, J. Chem. Phys. 128(22), 224706 (2008)

    Article  Google Scholar 

  59. S.M. Yazdanian, N. Hoepker, S. Kuehn, R.F. Loring, J.A. Marohn, Nano Lett. 9(6), 2273 (2009). doi:10.1021/nl9004332. URL http://dx.doi.org/10.1021/nl9004332

    Google Scholar 

  60. C. Schönenberger, S.F. Alvarado, Phys. Rev. Lett. 65(25), 3162 (1990). doi:10.1103/Phys RevLett.65.3162. URL http://prl.aps.org/abstract/PRL/v65/i25/p3162_1

    Google Scholar 

  61. M.T. Woodside, P.L. McEuen, Science 296(5570), 1098 (2002). doi:10.1126/science.1069923. URL http://www.ncbi.nlm.nih.gov/pubmed/12004123

    Google Scholar 

  62. J. Zhu, M. Brink, P.L. McEuen, Appl. Phys. Lett. 87, 242102 (2005)

    Article  Google Scholar 

  63. J. Zhu, M. Brink, P.L. McEuen, Nano Lett. 8(8), 2399 (2008). URL http://pubs.acs.org/doi/abs/10.1021/nl801295y

  64. R. Stomp, Y. Miyahara, S. Schaer, Q. Sun, H. Guo, P. Grutter, S. Studenikin, P. Poole, A. Sachrajda, Phys. Rev. Lett. 94(5), 56802 (2005). doi:10.1103/PhysRevLett.94.056802. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.056802

    Google Scholar 

  65. Y. Azuma, M. Kanehara, T. Teranishi, Y. Majima, Phys. Rev. Lett. 96(1), 16108 (2006). doi:10.1103/PhysRevLett.96.016108. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.016108

    Google Scholar 

  66. L. Cockins, Y. Miyahara, S.D. Bennett, A.A. Clerk, S. Studenikin, P. Poole, A. Sachrajda, P. Grutter, PNAS 107(21), 9496 (2010). doi:10.1073/pnas.0912716107. URL http://www.pnas.org/cgi/content/abstract/107/21/9496

  67. S.D. Bennett, L. Cockins, Y. Miyahara, P. Grütter, A.A. Clerk, Phys. Rev. Lett. 104(1), 2 (2010). doi:10.1103/PhysRevLett.104.017203. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.017203

    Google Scholar 

  68. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Science 324(5933), 1428 (2009). URL http://www.sciencemag.org/cgi/content/abstract/324/5933/1428

    Google Scholar 

  69. H. Hölscher, B. Gotsmann, W. Allers, U. Schwarz, H. Fuchs, R. Wiesendanger, Phys. Rev. B 64(7), 1 (2001). URL http://link.aps.org/doi/10.1103/PhysRevB.64.075402

    Google Scholar 

  70. A. Pioda, S. Kicin, T. Ihn, M. Sigrist, A. Fuhrer, K. Ensslin, A. Weichselbaum, S.E. Ulloa, M. Reinwald, W. Wegscheider, Phys. Rev. Lett. 93, 216801 (2004)

    Article  CAS  Google Scholar 

  71. P. Fallahi, A.C. Bleszynski, R.M. Westervelt, J. Huang, J.D. Walls, E.J. Heller, M. Hanson, A.C. Gossard, Nano Lett. 5, 223 (2005)

    Article  CAS  Google Scholar 

  72. A.C. Bleszynski, F.A. Zwanenburg, R.M. Westervelt, A.L. Roest, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nano Lett. 7(9), 2559 (2007). URL http://www.ncbi.nlm.nih.gov/pubmed/17691848

    Google Scholar 

  73. E. Bussmann, D.J. Kim, C.C. Williams, Appl. Phys. Lett. 85(13), 2538 (2004). URL http://link.aip.org/link/APPLAB/v85/i13/p2538/s1&Agg=doi

    Google Scholar 

  74. E. Bussmann, C.C. Williams, Appl. Phys. Lett. 88, 263108 (2006). URL http://link.aip.org/link/?APPLAB/88/263108/1

  75. E.B. Bussmann, N. Zheng, C.C. Williams, Nano Lett. 6(11), 2577 (2006). doi:10.1021/nl0620076. URL http://www.ncbi.nlm.nih.gov/pubmed/17090094

  76. J.P. Johnson, N. Zheng, C.C. Williams, Nanotechnology 20(5), 55701 (2009). URL http://stacks.iop.org/0957-4484/20/055701

    Google Scholar 

  77. N. Zheng, J.P. Johnson, C.C. Williams, G. Wang, Nanotechnology 21(29), 295708 (2010). doi:10.1088/0957-4484/21/29/295708. URL http://www.ncbi.nlm.nih.gov/pubmed/20601769

    Google Scholar 

  78. W. Lu, Z. Ji, L. Pfeiffer, K.W. West, A.J. Rimberg, Nature 423(6938), 422 (2003). URL http://dx.doi.org/10.1038/nature01642

    Google Scholar 

  79. R.G. Knobel, A.N. Cleland, Nature 424(6946), 291 (2003). URL http://dx.doi.org/10.1038/nature01773

    Google Scholar 

  80. A. Yacoby, H.F. Hess, T.A. Fulton, L.N. Pfeiffer, K.W. West, Solid State Commun. 111(1), 1 (1999). doi:10.1016/S0038-1098(99)00139-8. URL http://linkinghub.elsevier.com/retrieve/pii/S0038109899001398

  81. N.B. Zhitenev, T.A. Fulton, A. Yacoby, H.F. Hess, L.N. Pfeiffer, K.W. West, Nature 404(6777), 473 (2000). URL http://dx.doi.org/10.1038/35006591

    Google Scholar 

  82. S. Ilani, J. Martin, E. Teitelbaum, J.H. Smet, D. Mahalu, V. Umansky, A. Yacoby, Nature 427(6972), 328 (2004). doi:10.1038/nature02230. URL http://www.ncbi.nlm.nih.gov/pubmed/14737162

    Google Scholar 

  83. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nat. Phys. 4(2), 144 (2007). doi:10.1038/nphys781. URL http://www.nature.com/doifinder/10.1038/nphys781

    Google Scholar 

  84. H.T.A. Brenning, S.E. Kubatkin, D. Erts, S.G. Kafanov, T. Bauch, P. Delsing, Nano Lett. 6(5), 937 (2006). URL http://dx.doi.org/10.1021/nl052526t

    Google Scholar 

  85. P.I. Glicofridis, Subsurface charge accumulation imaging of the quantum hall liquid. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  86. G. Finkelstein, P. Glicofridis, R. Ashoori, M. Shayegan, Science 289(5476), 90 (2000). doi:10.1126/science.289.5476.90. URL http://www.sciencemag.org/cgi/content/abstract/289/5476/90

    Google Scholar 

  87. I. Maasilta, S. Chakraborty, I. Kuljanishvili, S. Tessmer, M. Melloch, Phys. Rev. B 68(20), 205328 (2003). doi:10.1103/PhysRevB.68.205328. URL http://link.aps.org/doi/10.1103/PhysRevB.68.205328

    Google Scholar 

  88. G.A. Steele, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 95(13), 136804 (2005)

    Article  CAS  Google Scholar 

  89. I. Kuljanishvili, C. Kayis, J.F. Harrison, C. Piermarocchi, T.A. Kaplan, S.H. Tessmer, L.N. Pfeiffer, K.W. West, Nat. Phys. 4(3), 227 (2008). URL http://dx.doi.org/10.1038/nphys855

    Google Scholar 

  90. M.P. Blencowe, Contemp. Phys. 46(4), 249 (2005). URL http://www.informaworld.com/openurl?genre=article&doi=10.1080/00107510500146865&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

  91. T.J. Kippenberg, K.J. Vahala, Science 321(5893), 1172 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Miyahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyahara, Y., Cockins, L., Grütter, P. (2012). Electrostatic Force Microscopy Characterization of Low Dimensional Systems. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22566-6_9

Download citation

Publish with us

Policies and ethics