Skip to main content

Contribution of the Numerical Approach to Kelvin Probe Force Microscopy on the Atomic-Scale

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 48))

  • 2322 Accesses

Abstract

The goal of this chapter is to gather and detail recent numericaldevelopments addressing the issue of atomic-scale measurements in Kelvin Probe Force Microscopy (KPFM). It is argued why the problem requires the combination between the atomistic description of the distance- and bias voltage-dependent force field occurring between the tip and the surface, as well as an accurate numerical implementation of the complex noncontact atomic force microscopy and KPFM setup. When combining these tools, it is possible to draw conclusions regarding the origin of the atomic-scale KPFM contrast and its connections with usual physical observables such as the surface potential and the local work function. These aspects are discussed with respect to the surface of a bulk ionic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In- and off-phase components of the LIA are essentially defined upon the structure of its input signal, i.e., here the driving signal of the cantilever which is arbitrarily generated out of a sinus waveform.

  2. 2.

    On the experimental level, the AM-KPFM setup requires that the bandwidths of the PSD and of the preamplifier are large enough to allow for the detection of the 2nd eigenmode without attenuation.

  3. 3.

    The expressions of the DC value of the bias voltage that maximizes Δf(z, V b) and the force F(z, V b) with V mod = 0, i.e., within the framework of spectroscopic curves in FM- and AM-KPFM, respectively are given by: \({\left.(\partial \Delta f(z,{V }_{\mathrm{b}})/\partial {V }_{\mathrm{dc}})\right \vert }_{{V }_{\mathrm{mod}}=0} = 0\)(1) and \({\left.(\partial F(z,{V }_{\mathrm{b}})/\partial {V }_{\mathrm{dc}})\right \vert }_{{V }_{\mathrm{mod}}=0} = 0\)(2), respectively. The expression of Δf is derived from the approach by Giessibl [71]: \(\Delta f(z,{V }_{\mathrm{b}}) \propto {\int \nolimits \nolimits }_{0}^{{T}_{0}}F(z,{V }_{\mathrm{b}})\sin ({\omega }_{0}t)\mathrm{d}t\) with: \({V }_{b} = {V }_{\mathrm{dc}} - {V }_{\mathrm{CPD}} + {V }_{\mathrm{mod}}\sin ({\omega }_{\mathrm{mod}}t)\). If the force has the usual quadratic-like form: \(F(z,{V }_{\mathrm{b}}) = h(z) \times {V }_{\mathrm{b}}^{2}\) (e.g., \(F = \frac{1} {2}\partial C/\partial z{V }_{\mathrm{b}}^{2}\)), then conditions (1) and (2) yield equivalently to V dc = V CPD. However, if the force has a less usual fully polynomial form, as this is the case when dealing with SRE forces [1936]: \(F(z,{V }_{\mathrm{b}}) = h(z) \times [A(z){V }_{\mathrm{b}}^{2} + B(z){V }_{\mathrm{b}} + C(z)]\), then conditions (1) and (2) give: \({V }_{\mathrm{dc}} = {V }_{\mathrm{CPD}} - I\prime/(2J\prime)\) (with \(I\prime ={ \int \nolimits \nolimits }_{0}^{{T}_{0}}B(z)h(z)\sin ({\omega }_{0}t)\mathrm{d}t\) and \(J\prime ={ \int \nolimits \nolimits }_{0}^{{T}_{0}}A(z)h(z)\sin ({\omega }_{0}t)\mathrm{d}t\)) and \({V }_{\mathrm{dc}} = {V }_{\mathrm{CPD}} - B(z)/(2A(z))\), respectively. Therefore the maxima of both spectroscopic methods differ. The main reason is that the force is dynamically z-dependent (which makes the compensated CPD z-dependent as well, as seen with the above equation), while Δf is averaged over the oscillation cycle, hereby averaging the force as well.

References

  1. A. Kikukawa, S. Hosaka, R. Imura, Rev. Sci. Instrum. 67(4), 1463 (1996)

    Article  CAS  Google Scholar 

  2. S. Kitamura, M. Iwatsuki, Appl. Phys. Lett. 72, 3154 (1998)

    Article  CAS  Google Scholar 

  3. S. Sadewasser, M. Lux-Steiner, Phys. Rev. Lett. 91, 266101 (2003)

    Article  Google Scholar 

  4. S. Sadewasser, T. Glatzel, R. Shickler, Y. Rosenwaks, M. Lux-Steiner, Appl. Surf. Sci. 210((1–2)), 32 (2003)

    Google Scholar 

  5. S. Sadewasser, P. Carl, T. Glatzel, M.C. Lux-Steiner, Nanotechnology 15, S14 (2004)

    Article  CAS  Google Scholar 

  6. J. Polesel-Maris, A. Piednoir, T. Zambelli, X. Bouju, S. Gauthier, Nanotechnology 15, S24 (2004)

    Article  CAS  Google Scholar 

  7. C. Sommerhalter, T. Matthes, T. Glatzel, A. Jäger-Waldau, M.C. Lux-Steiner, Appl. Phys. Lett. 75, 286 (1999)

    Article  CAS  Google Scholar 

  8. Y. Rosenwaks, R. Shikler, T. Glatzel, S. Sadewasser, Phys. Rev. B 70, 085320 (2004)

    Article  Google Scholar 

  9. H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.C. Lux-Steiner, N.S. Sariciftci, Nanoletters 5, 269 (2004)

    Google Scholar 

  10. S. Kitamura, K. Suzuki, M. Iwatsuki, Appl. Surf. Sci. 140, 265 (1999)

    Article  CAS  Google Scholar 

  11. Y. Sugawara, T. Uchihashi, M. Abe, S. Morita, Appl. Surf. Sci. 140, 371 (1999)

    Article  CAS  Google Scholar 

  12. S. Kitamura, K. Suzuki, M. Iwatsuki, C. Mooney, Appl. Surf. Sci. 157, 222 (2000)

    Article  CAS  Google Scholar 

  13. K. Okamoto, K. Yoshimoto, Y. Sugawara, S. Morita, Appl. Surf. Sci. 210, 128 (2003)

    Article  CAS  Google Scholar 

  14. K. Okamoto, Y. Sugawara, S. Morita, Jpn. J. Appl. Phys. 42, 7163 (2003)

    Article  CAS  Google Scholar 

  15. T. Arai, M. Tomitori, Phys. Rev. Lett. 93, 256101 (2004)

    Article  CAS  Google Scholar 

  16. F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, M. Szymonski, Phys. Rev. B 77(23), 235427 (2008)

    Article  Google Scholar 

  17. A. Sasahara, C.L. Pang, H. Onishi, J. Phys. Chem. B 110, 13453 (2006)

    Article  CAS  Google Scholar 

  18. G. Enevoldsen, T. Glatzel, M. Christensen, J. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008)

    Article  CAS  Google Scholar 

  19. F. Bocquet, L. Nony, C. Loppacher, T. Glatzel, Phys. Rev. B 78, 035410 (2008)

    Article  Google Scholar 

  20. R. Hoffmann, L. Kantorovich, A. Baratoff, H. Hug, H.J. Güntherodt, Phys. Rev. Lett. 92, 146103 (2004)

    Article  CAS  Google Scholar 

  21. R. Hoffmann, C. Barth, A. Foster, A. Shluger, H. Hug, H.J. Güntherodt, R. Nieminen, M. Reichling, J. Am. Chem. Soc. 127, 17863 (2005)

    Article  CAS  Google Scholar 

  22. M. Lantz, R. Hoffmann, A. Foster, A. Baratoff, H. Hug, H.R. Hidber, H.J. Güntherodt, Phys. Rev. B 74, 245426 (2006)

    Article  Google Scholar 

  23. R. Hoffmann, D. Weiner, A. Schirmeisen, A. Foster, Phys. Rev. B 80, 115426 (2009)

    Article  Google Scholar 

  24. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Péerez, S. Morita, O. Custance, Nature 446, 64 (2007)

    Article  CAS  Google Scholar 

  25. A. Foster, C. Barth, C. Henry, Phys. Rev. Lett. 102, 256103 (2009)

    Article  Google Scholar 

  26. C. Leendertz, F. Streicher, M.C. Lux-Steiner, S. Sadewasser, Appl. Phys. Lett. 89, 113120 (2006)

    Article  Google Scholar 

  27. S. Burke, J. LeDue, Y. Miyahara, J. Topple, S. Fostner, P. Grütter, Nanotechnology 20, 264012 (2009)

    Article  CAS  Google Scholar 

  28. H. Jacobs, P. Leuchtmann, O. Homan, A. Stemmer, J. Appl. Phys. 84(3), 1168 (1998)

    Article  CAS  Google Scholar 

  29. J. Colchero, A. Gil, A. Beró, Phys. Rev. B 64, 245403 (2001)

    Article  Google Scholar 

  30. H. McMurray, G. Williams, J. Appl. Phys. 91(3), 1673 (2002)

    Article  CAS  Google Scholar 

  31. T. Takahashi, S. Ono, Ultramicroscopy 100, 287 (2004)

    Article  CAS  Google Scholar 

  32. E. Palacios-Lidón, J. Abellán, J. Colchero, C. Munuera, C. Ocal, Appl. Phys. Lett. 87, 154106 (2005)

    Article  Google Scholar 

  33. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. Eng, Phys. Rev. B 71, 125424 (2005)

    Article  Google Scholar 

  34. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. Eng, Nanotechnology 18, 084006 (2007)

    Article  Google Scholar 

  35. K. Wandelt, Appl. Surf. Sci. 111, 1 (1997)

    Article  CAS  Google Scholar 

  36. L. Nony, F. Bocquet, C. Loppacher, T. Glatzel, Nanotechnology 20, 264014 (2009)

    Article  Google Scholar 

  37. R. Pérez, I. Stich, M. Payne, K. Terakura, Phys. Rev. B 58, 10835 (1998)

    Article  Google Scholar 

  38. L. Kantorovich, A. Foster, A. Shluger, A. Stoneham, Surf. Sci. 445, 283 (2000)

    Article  CAS  Google Scholar 

  39. R. Bennewitz, A. Foster, L. Kantorovich, M. Bammerlin, C. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A. Shluger, Phys. Rev. B 62(3), 2074 (2000)

    Article  CAS  Google Scholar 

  40. C. Barth, A. Foster, M. Reichling, A. Shluger, J. Phys. Condens. Matter 13, 2061 (2001)

    Article  CAS  Google Scholar 

  41. A. Foster, A. Shluger, R. Nieminena, Appl. Surf. Sci. 188, 306 (2002)

    Article  CAS  Google Scholar 

  42. P. Dieska, I. Stich, R. Pérez, Phys. Rev. Lett. 91, 216401 (2003)

    Article  Google Scholar 

  43. W. Hofer, A. Foster, A. Shluger, Rev. Mod. Phys. 75, 1287 (2003)

    Article  CAS  Google Scholar 

  44. O. Pakarinen, C. Barth, A. Foster, R. Nieminen, C. Henry, Phys. Rev. B 73, 235428 (2006)

    Article  Google Scholar 

  45. L. Kantorovich, T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004)

    Article  CAS  Google Scholar 

  46. T. Trevethan, L. Kantorovich, Nanotechnology 15, S34 (2004)

    Article  CAS  Google Scholar 

  47. T. Trevethan, L. Kantorovich, Nanotechnology 15, S44 (2004)

    Article  CAS  Google Scholar 

  48. T. Trevethan, L. Kantorovich, J. Polesel-Maris, S. Gauthier, Nanotechnology 18, 084017 (2007)

    Article  Google Scholar 

  49. T. Trevethan, A. Shluger, Nanotechnology 20, 264019 (2009)

    Article  Google Scholar 

  50. T. Trevethan, M. Watkins, L. Kantorovich, A. Shluger, J. Polesel-Maris, S. Gauthier, Nanotechnology 17, S5866 (2006)

    Article  Google Scholar 

  51. Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez, O. Custance, Phys. Rev. Lett. 98, 106104 (2007)

    Article  Google Scholar 

  52. T. Trevethan, M. Watkins, L. Kantorovich, A. Shluger, Phys. Rev. Lett. 98, 028101 (2007)

    Article  CAS  Google Scholar 

  53. T. Trevethan, L. Kantorovich, J. Polesel-Maris, S. Gauthier, A. Shluger, Phys. Rev. B 76, 085414 (2007)

    Article  Google Scholar 

  54. N. Martsinovich, L. Kantorovich, Phys. Rev. B 77, 205412 (2008)

    Article  Google Scholar 

  55. T. Trevethan, A. Shluger, J. Phys. Chem. C 112, 19577 (2008)

    Article  CAS  Google Scholar 

  56. M. Watkins, T. Trevethan, M. Sushko, A. Shluger, J. Phys. Chem. C 112, 4226 (2008)

    Article  CAS  Google Scholar 

  57. L. Nony, A. Foster, F. Bocquet, C. Loppacher, Phys. Rev. Lett. 103, 036802 (2009)

    Article  Google Scholar 

  58. L. Nony, A. Baratoff, D. Schär, O. Pfeiffer, A. Wetzel, E. Meyer, Phys. Rev. B 74, 235439 (2006)

    Article  Google Scholar 

  59. M. Gauthier, R. Pérez, T. Arai, M. Tomitori, M. Tsukada, Phys. Rev. Lett. 89(14), 146104 (2002)

    Article  Google Scholar 

  60. G. Couturier, R. Boisgard, L. Nony, J.P. Aimé, Rev. Sci. Instrum. 74(5), 2726 (2003)

    Article  CAS  Google Scholar 

  61. G. Couturier, R. Boisgard, D. Dietzel, J.P. Aimé, Nanotechnology 16, 1346 (2005)

    Article  Google Scholar 

  62. J. Polesel-Maris, S. Gauthier, J. Appl. Phys. 97, 044902 (2005)

    Article  Google Scholar 

  63. J. Kokavecz, Z. Toth, Z. Horvath, P. Heszler, A. Mechler, Nanotechnology 17, S173 (2006)

    Article  CAS  Google Scholar 

  64. C. Loppacher, M. Bammerlin, F. Battiston, M. Guggisberg, D. Müller, H.R. Hidber, R. Lüthi, E. Meyer, H.J. Güntherodt, Appl. Phys. A 66, S215 (1998)

    Article  CAS  Google Scholar 

  65. R.E. Best, Phase Locked Loops: Design, Simulation and Applications, 4th edn. (Mc Graw-Hill, New York, 1999)

    Google Scholar 

  66. M. Guggisberg, M. Bammerlin, C. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer, H.J. Güntherodt, Phys. Rev. B 61, 11151 (2000)

    Article  CAS  Google Scholar 

  67. D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  68. R. Watson, J. Davenport, M. Perlam, T. Sham., Phys. Rev. B 24, 1791 (1981)

    Google Scholar 

  69. A. Shluger, A. Rohl, D. Gay, R. Williams, J. Phys. Condens. Matter 6, 1825 (1994)

    Article  CAS  Google Scholar 

  70. A. Schirmeisen, D. Weiner, H. Fuchs, Phys. Rev. Lett. 97, 136101 (2006)

    Article  Google Scholar 

  71. F.J. Giessibl, Phys. Rev. B 61, 9968 (2000)

    Article  CAS  Google Scholar 

  72. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. Giessibl, G. Meyer, Science 324, 1428 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LN, FB, and CL wish to thank E. Meyer, T. Glatzel and S. Kawai from the Department of Physics of the University of Basel for stimulating discussions and acknowledge support from the ANR with the PNANO project MolSiC (ANR-08-P058-36). ASF wishes to thank L.N. Kantorovich for useful discussions and acknowledges support from the Academy of Finland and ESF FANAS programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Nony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nony, L., Bocquet, F., Foster, A.S., Loppacher, C. (2012). Contribution of the Numerical Approach to Kelvin Probe Force Microscopy on the Atomic-Scale. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22566-6_5

Download citation

Publish with us

Policies and ethics