Skip to main content

Experimental Technique and Working Modes

  • Chapter
  • First Online:
Book cover Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 48))

Abstract

Kelvin probe force microscopy is a scanning probe microscopy technique providing the capability to image the local surface potential of a sample with high spatial resolution. It is based on the non-contact atomic force microscope and minimizes the electrostatic interaction between the scanning tip and the surface. The two main working modes are the amplitude modulation and the frequency modulation mode, in which the electrostatic force or the electrostatic force gradient are minimized by the application of a dc bias voltage, respectively. For metals and semiconductors, the contact potential difference is determined, which is related to the sample’s work function, while for insulators information about local charges is obtained. This chapter provides a brief introduction to non-contact atomic force microscopy and describes the details of the various Kelvin probe force microscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle, the definition of the CPD could also be selected as \({V }_{\mathrm{CPD}} = ({\Phi }_{\mathrm{tip}} - {\Phi }_{\mathrm{sample}})/e\), which corresponds to − V CPD of (2.13). We selected the definition of (2.13) such that the changes in V CPD directly correspond to changes in the work function. Thus, images of V CPD represent the same contrast as images of the sample’s work function Φ sample, just with a constant absolute offset, which is equal to the work function of the tip. In the experimental realization this would correspond to a situation, where the voltage is applied to the sample and the tip is grounded (see Sect. 2.7).

References

  1. D.W. Abraham, C. Williams, J. Slinkman, H.K. Wickramasinghe, J. Vac. Sci. Technol. B 9, 703 (1991)

    Article  CAS  Google Scholar 

  2. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  Google Scholar 

  3. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)

    Article  Google Scholar 

  4. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  Google Scholar 

  5. H.-J. Butt, M. Jaschke, Nanotechnology 6, 1 (1995)

    Article  Google Scholar 

  6. J. Colchero, A. Gil, A.M. Baró, Phys. Rev. B 64, 245403 (2001)

    Article  Google Scholar 

  7. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, J. Colloid. Interf. Sci. 53, 314 (1975)

    Article  CAS  Google Scholar 

  8. R. Dianoux, F. Martins, F. Marchi, C. Alandi, F. Comin, J. Chevrier, Phys. Rev. B 68, 045403 (2003)

    Article  Google Scholar 

  9. G.H. Enevoldsen, Th. Glatzel, M.C. Christensen, J.V. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008)

    Article  CAS  Google Scholar 

  10. R. García, R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

    Article  Google Scholar 

  11. F.J. Giessibl, Phys. Rev. B 56, 16010 (1997)

    Article  CAS  Google Scholar 

  12. Th. Glatzel, S. Sadewasser, M.Ch. Lux-Steiner, Appl. Sur. Sci. 210, 84 (2003)

    Article  CAS  Google Scholar 

  13. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Vac. Sci. Technol. B 14, 457 (1996)

    Article  CAS  Google Scholar 

  14. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Never, P. Kaszuba, R. Gluck, R. Wells, J. Pekarik, R. Finch, J. Vac. Sci. Technol. B 14, 440 (1996)

    Article  CAS  Google Scholar 

  15. J.N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992)

    Google Scholar 

  16. S. Kawai, H. Kawakatsu, Appl. Phys. Lett 89, 013108 (2006)

    Article  Google Scholar 

  17. L. Kelvin, Phil. Mag. 46, 82 (1898)

    Google Scholar 

  18. A. Kikukawa, S. Hosaka, R. Imura, Appl. Phys. Lett. 66, 3510 (1995)

    Article  CAS  Google Scholar 

  19. A. Kikukawa, S. Hosaka, R. Imura, Rev. Sci. Instrum. 67, 1463 (1996)

    Article  CAS  Google Scholar 

  20. Y. Martin, C.C. Williams, H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987)

    Article  CAS  Google Scholar 

  21. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988)

    Article  Google Scholar 

  22. F. Müller, A.-D. Müller, M. Hietschold, S. Kämmer, Meas. Sci. Technol. 9, 734 (1998)

    Article  Google Scholar 

  23. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  Google Scholar 

  24. R. Pérez, M.C. Payne, I. Stich, K. Terukura, Phys. Rev. Lett. 78, 678 (1997)

    Article  Google Scholar 

  25. P.A. Rosenthal, E.T. Yu, R.L. Pierson, P.J. Zampardi, J. Appl. Phys. 87, 1937 (1999)

    Article  Google Scholar 

  26. Y. Rosenwaks, R. Shikler, Th. Glatzel, S. Sadewasser, Phys. Rev. B 70, 085320 (2004)

    Article  Google Scholar 

  27. S. Sadewasser, M.Ch. Lux-Steiner, Phys. Rev. Lett. 91, 266101 (2003)

    Article  Google Scholar 

  28. K. Sajewicz, F. Krok, J. Konior, Jpn. J. Appl. Phys. 49, 025201 (2010)

    Article  Google Scholar 

  29. R. Shikler, T. Meoded, N. Fried, Y. Rosenwaks, Appl. Phys. Lett. 74, 2972 (1999)

    Article  CAS  Google Scholar 

  30. R. Shikler, T. Meoded, N. Fried, B. Mishori, Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999)

    Article  CAS  Google Scholar 

  31. Ch. Sommerhalter, Dissertation, Freie Universität Berlin (1999)

    Google Scholar 

  32. Ch. Sommerhalter, Th.W. Matthes, Th. Glatzel, A. Jäger-Waldau, M.Ch. Lux-Steiner, Appl. Phys. Lett. 75, 286 (1999)

    Article  CAS  Google Scholar 

  33. Ch. Sommerhalter, Th. Glatzel, Th.W. Matthes, A. Jäger-Waldau, M.Ch. Lux-Steiner, Appl. Surf. Sci. 157, 263 (2000)

    Article  CAS  Google Scholar 

  34. J.M.R. Weaver, D.W. Abraham, J. Vac. Sci. Technol. B 9, 1559 (1991)

    Article  CAS  Google Scholar 

  35. C.C. Williams, Annu. Rev. Mater. Sci. 29, 471 (1999)

    Article  CAS  Google Scholar 

  36. M. Yan, G.H. Bernstein, Ultramicroscopy 106, 582 (2006)

    Article  CAS  Google Scholar 

  37. U. Zerweck, Ch. Loppacher, T. Otto, S. Grafström, L.M. Eng, Phys. Rev. B 71, 125424 (2005)

    Article  Google Scholar 

  38. L. Zitzler, S. Herminghaus, F. Mugele, Phys. Rev. B 66, 155436 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sadewasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadewasser, S. (2012). Experimental Technique and Working Modes. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22566-6_2

Download citation

Publish with us

Policies and ethics