Skip to main content

COROR: A COmposable Rule-Entailment Owl Reasoner for Resource-Constrained Devices

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 6826)


OWL (Web Ontology Language) reasoning has been extensively studied since its standardization by W3C. While the prevailing research in the OWL reasoning community has targeted faster, larger scale and more expressive OWL reasoners, only a small body of research is focused on OWL reasoning for resource-constrained devices such as mobile phones or sensors. However the ever-increasing application of semantic web technologies in pervasive computing, and the desire to push intelligence towards the edge of the network, emphasizes the need for resource-constrained reasoning. This paper presents COROR a COmposable Rule-entailment Owl Reasoner for resource-constrained devices. What distinguishes this work from related work is the use of two novel reasoner composition algorithms that dynamically dimension a rule-based reasoner at runtime according to the features of the particular semantic application. This reasoner is implemented and evaluated on a resource-constrained sensor platform. Experiments show that the composition algorithms outperform the original non-composable reasoner while retaining the same level of reasoning capability.


  • Composable Reasoner
  • Resource-Constrained Reasoning
  • OWL Reasoning
  • Rule-engine Optimization
  • OWL

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22546-8_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-22546-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ishida, T.: An optimization algorithm for production systems. IEEE Transactions on Knowledge and Data Engineering 6, 549–558 (1994)

    CrossRef  Google Scholar 

  2. Ozacar, T., Ozturk, O., Unalir, M.O.: Optimizing a Rete-based Inference Engine using a Hybrid Heuristic and Pyramid based Indexes on Ontological Data. J. of Computers 2, 41 (2007)

    CrossRef  Google Scholar 

  3. Scales, D.J.: Efficient Matching Algorithm for the OAR/OPS5 Production System. Technical Report KSL-86-47, Department of Computer Science, Stanford University (1986)

    Google Scholar 

  4. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. Web Semantics: Science, Services and Agents on the World Wide Web 3, 79–115 (2005)

    CrossRef  Google Scholar 

  5. Forgy, C.: Rete: A Fast Algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19, 17–37 (1982)

    CrossRef  Google Scholar 

  6. Tai, W., Brennan, R., Keeney, J., O’Sullivan, D.: An Automatically Composable OWL Reasoner for Resource Constrained Devices. In: Proc. Intl. Conf. on Semantic Computing (2009)

    Google Scholar 

  7. Meditskos, G., Bassiliades, N.: A Rule-Based Object-Oriented OWL Reasoner. IEEE Transactions on Knowledge and Data Engineering 20, 397–410 (2008)

    CrossRef  Google Scholar 

  8. Gu, T., Kwok, Z., Koh, K.K., Pung, H.K.: A Mobile Framework Supporting Ontology Processing and Reasoning. In: Proc. Workshop on Requirements and Solutions for Pervasive Software Infrastructures (2007)

    Google Scholar 

  9. Steller, L., Krishnaswamy, S.: Pervasive Service Discovery: mTableaux Mobile Reasoning. In: Proc. Intl. Conf. on Semantic Systems (2008)

    Google Scholar 

  10. Wright, I., Marshall, J.: The execution kernel of RC++: RETE*, a faster RETE with TREAT as a special case. Int. J. of Intelligent Games and Simulation 2 (2003)

    Google Scholar 

  11. Miranker, D.P.: TREAT: A better match algorithm for AI production systems. In: Proc. of AAAI Conf., pp. 42–47 (1987)

    Google Scholar 

  12. Pellet reasoner,

  13. FaCT++,

  14. RacerPro,

  15. Jena,

  16. KAON2 reasoner,

  17. QuOnto,

  18. CEL,

  19. OWLIM,

  20. BaseVISor,

  21. Bossam,

  22. Oracle Database Semantic Technologies,

  23. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of Automated Reasoning 39, 385–429 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Web Ontology Language (OWL) Abstract Syntax and Semantics, W3C Recommendation (2004)

    Google Scholar 

  25. Kim, T., Park, I., Hyun, S.J., Lee, D.: MiRE4OWL: Mobile Rule Engine for OWL. In: Proc. Intl. Workshop on Middleware Engineering, ME 2010 (2010)

    Google Scholar 

  26. Ali, S., Kiefer, S.: μOR - A Micro OWL DL Reasoner for Ambient Intelligent Devices. In: Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 305–316. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  27. Sinner, A., Kleemann, T.: KRHyper - In Your Pocket. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 452–457. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  28. Kleemann, T., Sinner, A.: User Profiles and Matchmaking on Mobile Phones. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 135–147. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  29. Brennan, R., Tai, W., O’Sullivan, D., Aslam, M.S., Rea, S., Pesch, D.: Open Framework Middleware for Intelligent WSN Topology Adaption in Smart Buildings. In: Proc. Intl. Conf. on Ultra Modern Telecommunications & Workshops (2009)

    Google Scholar 

  30. Koziuk, M., Domaszewicz, J., Schoeneich, R.O., Jablonowski, M., Boetzel, P.: Mobile Context-Addressable Messaging with DL-Lite Domain Model. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 168–181. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  31. Teams,

  32. OWLS-profile,

  33. Koala,

  34. University,

  35. Beer,

  36. Mindswapper,

  37. FOAF,

  38. mad_cows,

  39. Biopax,

  40. food,

  41. miniTambis,

  42. ATK-Portal,

  43. wine,

  44. amino-acid,

  45. pizza,

  46. tambis-full,

  47. NATO,

  48. SUN SPOT,

  49. μJena,

  50. Hanson, E.N., Hasan, M.S.: Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing. Tech. Report, CIS Dept, University of Florida (1993)

    Google Scholar 

  51. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proc. Intl. Conf. on World Wide Web (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tai, W., Keeney, J., O’Sullivan, D. (2011). COROR: A COmposable Rule-Entailment Owl Reasoner for Resource-Constrained Devices. In: Bassiliades, N., Governatori, G., Paschke, A. (eds) Rule-Based Reasoning, Programming, and Applications. RuleML 2011. Lecture Notes in Computer Science, vol 6826. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22545-1

  • Online ISBN: 978-3-642-22546-8

  • eBook Packages: Computer ScienceComputer Science (R0)