Skip to main content

Design and Implementation CAM Architecture Memory Cell Using DMLSA Technique

  • Conference paper
Trends in Network and Communications (WeST 2011, NeCoM 2011, WiMoN 2011)

Abstract

A low-power content-addressable memory (CAM) using a differential match line (DMLSA) sense amplifier is proposed in this work. The proposed self-disabled sensing technique can choke the charge current fed into the ML right after the matching comparison is generated. Instead of using typical NOR/NAND-type CAM cells with the single-ended ML, the proposed novel NAND CAM cell with the differential ML design can boost the speed of comparison without sacrificing power consumption. In addition, the 9-T CAM cell provides the complete write, read, and comparison functions to refresh the data and verify its correctness before searching. The CAM with the proposed technique is implemented on silicon to justify the performance by using a standard 90-nm complementary metal–oxide–semiconductor process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, Y.-J., Liao, Y.-H.: Hybrid-Type CAM Design for Both Power and Performance Efficiency. IEEE Trans. Very Large Scale Integration (VLSI) Systems 16, 965–974 (2008)

    Article  Google Scholar 

  2. Haigh, J., Clark, L.: Fast Translation Lookaside Buffers for Low power Embedded Microprocessors. Integration: The VLSI Journal 41(4), 509–523 (2008)

    Google Scholar 

  3. Pagiamtzis, K., Sheikholeslami, A.: A low-power contentaddressable memory (CAM) using pipelined hierarchical search scheme. IEEE J. of Solid-State Circuits 39(9), 1512–1519 (2004)

    Article  Google Scholar 

  4. Wu, Y., Hu, J.: Low-power content addressable memory using 2N-2N2P Circuits. In: Proc. IEEE ICCCAS 2006, Guilin, China, pp. 2657–2661 (June 2006)

    Google Scholar 

  5. Arsovski, I., Sheikholeslami, A.: A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories. IEEE J. of Solid-State Circuits 38(11), 1958–(1966)

    Article  Google Scholar 

  6. Kramer, A., Denker, J.S., Flower, B., et al.: 2nd order adiabatic computation with 2N-2P and 2N-2N2P logic circuits. In: Proc. The International Symposium on Low Power Electronics and Design, Dana Point, pp. 191–196 (1995)

    Google Scholar 

  7. Hu, J., Xu, T., Li, H.: A lower-power register file based on complementary pass-transistor adiabatic logic. IEICE Trans. on Inf. & Sys. E88-D(7), 1479–1485 (2005)

    Article  Google Scholar 

  8. Natarajan, A., Jasinski, D., Burleson, W., et al.: A hybrid adiabatic content addressable memory for ultra low-power applications. In: Proc. Great Lakes Symposium on VLSI, Washington, D.C., USA, April 28-29, pp. 72–75 (2003)

    Google Scholar 

  9. Wu, Y., Hu, J.: Low-power content addressable memory using 2N-2N2P Circuits. In: Proc. IEEE ICCCAS 2006, Guilin, China, pp. 2657–2661 (June 2006)

    Google Scholar 

  10. Maksimovic, D., Oklobdzija, V.G.: Integrated power clock generators for low energy logic. In: Proc. IEEE Power Electronics Specialists Conf., Atlanta, GA, June 18-22, pp. 61–67 (1995)

    Google Scholar 

  11. Moon, Y., Jeong, D.K.: A 32×32-bit adiabatic register file with supply clock generator. IEEE J. of Solid-State Circuits 33(5), 696–701 (1998)

    Article  Google Scholar 

  12. Pagiamtzis, K., Sheikholeslami, A.: Content-addressable memory (CAM) circuits and architectures: A tutorial and survey. IEEE J. Solid-State Circuits 41, 712 (2006)

    Article  Google Scholar 

  13. Juan, T., Lang, T., Navarro Reducing, J.: TLB power requirements. In: Proc. Int. Symp. Low Power Electronics and Design, p. 196 (1997)

    Google Scholar 

  14. Miyatake, H., Tanaka, M., Mori, Y.: A design for high-speed low-power CMOS fully parallel content-addressable memory macros. IEEE J. Solid-State Circuits 36, 956 (2001)

    Article  Google Scholar 

  15. Arsovski, I., Sheikholeslami, A.: A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories. IEEE J. Solid-State Circuits 38, 1958 (2003)

    Article  Google Scholar 

  16. Zukowski, C.A., Wang, S.Y.: Use of selective precharge for low-power content-addressable memories. In: Proc. Int. Symp. Circuits and Syst., p. 1788 (1997)

    Google Scholar 

  17. Cheng, K.H., Wei, C.H., Jiang, S.Y.: Static divided word matching line for low-power content addressable memory design. In: Proc. Int. Symp. Circuits and Syst., p. 629 (2004)

    Google Scholar 

  18. Chang, Y.J., Lai, F., Yang, C.L.: Zero-aware asymmetric SRAM cell for reducing cache power in writing zero. IEEE Trans. Very Large Scale Integr. Syst. 12, 827 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sreenivasa Rao, I., Kumar, B.S.N.S.P., Raghavendra, S., Malleswara Rao, V. (2011). Design and Implementation CAM Architecture Memory Cell Using DMLSA Technique. In: Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds) Trends in Network and Communications. WeST NeCoM WiMoN 2011 2011 2011. Communications in Computer and Information Science, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22543-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22543-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22542-0

  • Online ISBN: 978-3-642-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics