Skip to main content

A Hybrid Approach to Texture Classification

  • Conference paper
Advances in Network Security and Applications (CNSA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 196))

Included in the following conference series:

Abstract

The rapid expansion of the internet and the wide use of digital data have increased the need for both efficient image database creation and retrieval procedure. In this paper, texture classification based on the combination of texture features is proposed. Since most significant information of a texture often appears in the high frequency channels, the features are extracted by the computation of LBP and Texture Spectrum histogram. Euclidean distance is used for similarity measurement. The experimental result shows that 97.99% classification accuracy is obtained by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Long, F., Zhang, H., Feng, D.D.: Fundamentals of Content Based Image Retrieval

    Google Scholar 

  2. Tamura, H., Mori, S., Yamawaki, T.: Textures Corresponding to Visual Perception. IEEE Trans. syst. Man Cybern, SMC 8(6), 460–473 (1978)

    Article  Google Scholar 

  3. Rui, Y., Huang, T.S., Chang, S.-F.: Image Retrieval: Current Techniques, Promising Directions, and Open Issues. Journal of Visual Communication and Image Representation 10(1), 39–62 (1999)

    Article  Google Scholar 

  4. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Trans. Pattern Anal. Machine Intell. PAMI 5(1), 25–39 (1983)

    Article  Google Scholar 

  5. Haralick, R.M., Shanmuga, K., Dinstein, I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics SMC 3, 610–621 (1973)

    Article  Google Scholar 

  6. Chen, C.C.: Markov Random Fields in Image Analysis, Ph.D. Thesis, Computer Science Department, Michigan State University, East Lansing, MI (1988)

    Google Scholar 

  7. Rignot, E., Kwok, R.: Extraction of Textural Features in SAR Images: Statistical Model and Sensitivity. In: Proceedings of International Geoscience and Remote Sensing Symposium, Washington, DC, pp. 1979–1982 (1990)

    Google Scholar 

  8. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine 18(8), 837–842 (1996)

    Article  Google Scholar 

  9. Li, S.Z., Huang, X., Wang, Y.: Shape localization based on statistical method using extended local binary pattern. In: IEEE Proc. Conf. Image and Graphics, pp. 184–187 (2004)

    Google Scholar 

  10. Pass, G., Zabih, R.: Computer Science Department. Cornell University. Ithaca, Histogram Refinement for Content-Based Image Retrieval

    Google Scholar 

  11. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recognition Letters 24, 1513–1521 (2003)

    Article  MATH  Google Scholar 

  12. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  13. Chang, T., Jay Kuo, C.C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process 2(4), 429–441 (1993)

    Article  Google Scholar 

  14. Chellappa, R., Chatterjee, S.: Classification of texture using Gaussian Markov Random Fields. IEEE Trans. Acoustic Speech Signal Process, ASSP 33(4), 959–963 (1985)

    Article  MathSciNet  Google Scholar 

  15. He, D.C., Wang, L.: Texture unit, Texture spectrum and Texture Analysis. IEEE transactions on Geoscience and Remote Sensing 28(4) (July 1990)

    Google Scholar 

  16. He, D.C., Wang, L.: Texture classification using texture spectrum, vol. 23(8) (1990)

    Google Scholar 

  17. Jain, A.K.: Fundamentals of Digital image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  18. Hung, C.-C., Pham, M., Arasteh, S.: Image Texture Classification Using Texture Spectrum and Local Binary Pattern. IEEE transactions on pattern recognition, 2739–2742 (2006)

    Google Scholar 

  19. Zhitao, X., Minx, Y., Chengming, G.: Using Spectrum to Extract Texture Feature. IEEE transactions on image processing, 657–659 (2002)

    Google Scholar 

  20. Hiremath, P.S., Shivashankar, S.: Texture Classification using Wavelet Packet Decomposition. GVIP Journal 6(2) (September 2006)

    Google Scholar 

  21. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  22. Tuceryan, M., Jain, A.K.: Texture Analysis handbook of Pattern Recognition and Computer Vision (1994)

    Google Scholar 

  23. Jian, M., Guo, H., Liu, L.: Texture Image Classification Using Visual Perceptual Texture Features and Gabor Wavelet Features. Journal of Computers 4(8) (August 2009)

    Google Scholar 

  24. Borchani, M., Stamon, G.: Texture features for Image Classification and Retrieval. In: SPIE, vol. 3229, p. 401(1997) (March 2005)

    Google Scholar 

  25. Karkanis, S., Galousi, K., Maroulis, D.: Classification of Endoscopic Images Based on Texture Spectrum

    Google Scholar 

  26. Wiselin Jiji, G., Ganesan, L.: Unsupervised Segmentation using Fuzzy Logic based Texture Spectrum for MRI Brain Images. World Academy of Science, Engineering and Technology 5 (2005)

    Google Scholar 

  27. Ojala, T., Pietikäinen, M.: Unsupervised Texture Segmentation Using Feature Distributions. Pattern Recognition 32, 477–486, 1495-1501 (1999), http://www.cssip.elec.uq.edu.au/guy/meastex/meastex.html

    Article  Google Scholar 

  28. Smith, J.R., Chang, S.-F.: Visually searching the web for content, IEEE Multimedia Magazine 4(3), 12–20 (1997) (Columbia U. CU/CTR Technical Report 459-96-25)

    Google Scholar 

  29. Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination in large image databases. In: Proc. IEEE Int. Conf. on Image Proc. (1994)

    Google Scholar 

  30. Thyagarajan, K.S., Nguyen, T., Persons, C.: A maximum likelihood approach to texture classification using wavelet transform. In: Proc. IEEE Int. Conf. on Image Proc. (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vijayalakshmi, B., Subbiah Bharathi, V. (2011). A Hybrid Approach to Texture Classification. In: Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds) Advances in Network Security and Applications. CNSA 2011. Communications in Computer and Information Science, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22540-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22540-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22539-0

  • Online ISBN: 978-3-642-22540-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics