Skip to main content

Vapor–Liquid–Solid Growth of Semiconductor Nanowires

  • Chapter
  • First Online:
Semiconductor Nanostructures for Optoelectronic Devices

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanowires make possible to manipulate light in novel methods and thus are promising materials for advanced optoelectronics. To exploit the potential, the growth behavior has to be controlled since it dominates the physical and chemical states and, in turn, the optical properties of nanowires. In this chapter, the vapor–liquid–solid (VLS) mechanism for the growth and modulation of nanowires was discussed. The chapter first reviewed the fundamental aspects of the VLS mechanism. Then the state of the art of the growth and modulation of nanowires for optoelectronics were discussed from the point of view of the critical issues pertaining to this mechanism. Some examples of optoelectronic devices that had been fabricated based on the VLS mechanism were also reviewed in an effort to cover the cutting edge technology in this area. Lastly, a summary and several different perspectives on the VLS mechanism were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964); in Whisker Technology. ed. by A.P. Levitt (John Wiley and Sons, Inc., New York, 1970)

    Google Scholar 

  2. H.-J. Choi, J.-G. Lee, J. Mat. Sci. 30, 1982 (1995)

    Article  ADS  Google Scholar 

  3. Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)

    Article  Google Scholar 

  4. F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 95, 146104 (2005)

    Article  ADS  Google Scholar 

  5. V. Schmidt, J.V. Wittemann, S. Senz, U. Gosele, Adv. Mat. 21, 2681 (2009)

    Article  Google Scholar 

  6. T.B. Massalski, P.R. Submanian, H. Okamoto, Binary Alloy Phase Diagrams, 2nd ed., vol. 1 (ASM International, Materials Park, OH, 1998)

    Google Scholar 

  7. E.A. Sutter, P.W. Sutter, ACS Nano 4, 4943 (2010)

    Article  Google Scholar 

  8. H. Adhikari, A.F. Marshall, I.A. Goldthorpe, C.E.D. Chidsey, P.C. McIntyre, ACS Nano 1, 415 (2007)

    Article  Google Scholar 

  9. E.J. Schwalbach, P.W. Voorhees, Nano Lett. 8, 3739 (2008)

    Article  ADS  Google Scholar 

  10. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science 316, 729 (2007)

    Article  ADS  Google Scholar 

  11. E.I. Givargozov, J. Cryst. Growth 31, 20 (1975)

    Article  ADS  Google Scholar 

  12. T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris, J. Appl. Phys. 89, 1008 (2001)

    Article  ADS  Google Scholar 

  13. K. Lew, J.M. Redwing, J. Cryst. Growth 254, 14 (2003)

    Google Scholar 

  14. J. Kikkawa, Y. Ohno, S. Takeda, Appl. Phys. Lett. 86, 123109–1 (2005)

    Article  ADS  Google Scholar 

  15. M.H. Huang, Y.Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mat. 13, 113 (2001)

    Article  Google Scholar 

  16. H. Jeong, T.E. Park, H.K. Seong, M. Kim, U. Kim, H.J. Choi, Chem. Phys. Lett.467, 331 (2009)

    Google Scholar 

  17. T. Stelzner, G. Andra, E. Wendler, W. Wesch, R. Scholz, U. Gosele, S. Christiansen, Nanotechnology 17, 2895 (2006)

    Article  ADS  Google Scholar 

  18. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lenscch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nat. Nanotechnol., 3, 168. (2008)

    Google Scholar 

  19. J.B. Hannon, S. Kodambaka, F.M. Rossand, R.M. Tromp, Nature 440, 69 (2006)

    Article  ADS  Google Scholar 

  20. Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, Y.M. Habib, Nano Lett. 9, 4494 (2009)

    Article  ADS  Google Scholar 

  21. Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nat. Nanotechnol. 1, 186 (2006)

    Article  ADS  Google Scholar 

  22. P.X. Gao, Y. Ding, Z.L. Wang, Nano Lett. 3, 1315 (2003)

    Article  ADS  Google Scholar 

  23. J. Yoo, Y.-J. Hong, S. An, G.-C. Yi, B. Chon, T. Joo, J.-W. Kim, J.-S. Lee, Appl. Phys. Lett. 89, 043124–1 (2006)

    Article  ADS  Google Scholar 

  24. B. Mandl, J. Stangl, E. Hilner, A.A. Zakharov, K. Hillerich, A.W. Dey, L. Samuelson, G. Bauer, K. Deppert, A. Mikkelsen, Nano Lett. 10, 4443 (2010)

    Article  ADS  Google Scholar 

  25. L. Gao, R.L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M.K. Hudait, D.L. Huffaker, M.S. Goorsky, S. Kodambaka, R.F. Hicks, Nano Lett. 9, 2223 (2009)

    Article  ADS  Google Scholar 

  26. B. Delleyand, E.F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995)

    Article  ADS  Google Scholar 

  27. C. Harris, E.P. O’Reilly, Physica E 32, 341 (2006)

    Article  ADS  Google Scholar 

  28. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004)

    Article  ADS  Google Scholar 

  29. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature 422, 599 (2003)

    Article  ADS  Google Scholar 

  30. M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 106, 4036 (2002)

    Article  Google Scholar 

  31. X. Wang, Y. Ding, C.J. Summers, Z.L. Wang, J. Phys. Chem. B 108, 8773 (2004)

    Article  Google Scholar 

  32. L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)

    Article  ADS  Google Scholar 

  33. L. Hu, G. Chen, Nano Lett. 7, 3249 (2007)

    Article  ADS  Google Scholar 

  34. U. Kim, T.-E. Park, I. Kim, H.-K. Seong, M.-H. Kim, J. Chang, J.-G. Park, H.-J. Choi, J. Appl. Phys. 106, 123903–1 (2009)

    Google Scholar 

  35. T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, Nat. Mater. 3, 524 (2004)

    Article  ADS  Google Scholar 

  36. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191 (2008)

    Article  ADS  Google Scholar 

  37. Z. Zhong, F. Qian, D. Wang, C.M. Lieber,Nano Lett. 3, 343 (2003)

    Article  ADS  Google Scholar 

  38. T. Mårtensson, C.P.T. Svensson, B.A. Wacaser, M.W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L.R. Wallenberg, L. Samuelson, Nano Lett. 4, 1987 (2004)

    Article  ADS  Google Scholar 

  39. X.-Y. Bao, C. Soci, D. Susac, J. Bratvold, D.P.R. Aplin, W. Wei, C.-Y. Chen, S.A. Dayeh, K.L. Kavanagh, D. Wang, Nano Lett. 8, 3755 (2008)

    Article  ADS  Google Scholar 

  40. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  41. X. Wang, J. Song, P. Li, J.H. Ryou, R.D. Dupuis, C.J. Summers, Z.L. Wang, J. Am. Chem. Soc. 127, 7920 (2005)

    Article  Google Scholar 

  42. I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, P. Mogilevsky, Appl. Phys. Lett. 87, 103110–1 (2005)

    Article  ADS  Google Scholar 

  43. D. Li, C.Z. Ning, Nano Lett. 8, 4234 (2008)

    Article  ADS  Google Scholar 

  44. F. Qian, Y. Li, S. Gradecak, H. Park, Y. Dong, Y. Ding, Z. Wang, C.M. Lieber, Nat. Mater. 7, 791 (2008)

    Article  Google Scholar 

  45. H.-J. Choi, J.C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang, J. Phys. Chem. B, 107, 8721 (2003)

    Article  Google Scholar 

  46. P.D. Markowitz, M.P. Zach, P.C. Gibbons, R.M. Penner, W.E. Buhro, J. Am. Chem. Soc. 123, 4502 (2001)

    Article  Google Scholar 

  47. H.-J. Choi, J.H. Shin, K. Suh, H.-K. Seong, H.-C. Han, J.-C. Lee, Nano Lett. 5, 2432(2005)

    Article  ADS  Google Scholar 

  48. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  49. M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nano Lett. 2, 87 (2002)

    Article  ADS  Google Scholar 

  50. Y. Wu, R. Fan, Peidong Yang, Nano Lett., 2, 83 (2002)

    Article  ADS  Google Scholar 

  51. A. Fuhrer, L.E. Froberg, J.N. Pedersen, M.W. Larsson, A. Wacker, M.-E. Pistol, L. Samuelson, Nano Lett.7, 243 (2007)

    Google Scholar 

  52. R.E. Algra, M.A. Verheijen, M.T. Borgstrom, L. Feiner, G. Immink, W.J.P. VanEnckevort, E. Vlie, E.P.A.M. Bakkers, Nature, 456, 369–372 (2008)

    Article  ADS  Google Scholar 

  53. H.-K. Seong, E.-K. Jeon, M.-H. Kim, H. Oh, J. Lee, J.-J. Kim, H.-J. Choi, Nano Lett. 8, 3656 (2008)

    Article  ADS  Google Scholar 

  54. T. Kuykendall, P. Uurich, S. Aloni, P. Yang, Nat. Mater. 6, 951 (2007)

    Article  ADS  Google Scholar 

  55. Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, M. Paladugu, J. Zou, A.A. Suvorova, Nano Lett. 6, 599 (2006)

    Article  ADS  Google Scholar 

  56. Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000)

    Article  Google Scholar 

  57. H.-J. Choi, H.-K. Seong, J. Chang, K.-I. Lee, Y.-J. Park, J.-J. Kim, S.-K. Lee, R. He, T. Kuykendall, Peidong Yang, Adv. Mater. 17, 1351 (2005)

    Article  Google Scholar 

  58. H.-K. Seong, J.-Y. Kim, J.-J. Kim, S.-C. Lee, S.-R. Kim, U. Kim, T.-E. Park, H.-J. Choi, Nano Lett. 7, 3366 (2007)

    Article  ADS  Google Scholar 

  59. D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, L.J. Lauhon, Nat. Nanotechnol. 4, 315 (2009)

    Article  ADS  Google Scholar 

  60. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  61. F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Nano Lett. 5, 2287 (2005)

    Article  ADS  Google Scholar 

  62. Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, Nano Lett. 9, 2183 (2009)

    Article  ADS  Google Scholar 

  63. C.P.T. Svensson, T. Martensson, J. Tragardh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, J. Ohlsson, Nanotechnology 19, 305201 (2008)

    Article  Google Scholar 

  64. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191 (2008)

    Article  ADS  Google Scholar 

  65. J. Bae, H. Kim, X.-M. Zhang, C.H Dang, Y. Zhang, Y.J. Choi, A. Nurmikko, Z.L Wang, Nanotechnology 21, 095502 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Laboratory program and Pioneer Program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon-Jin Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choi, HJ. (2012). Vapor–Liquid–Solid Growth of Semiconductor Nanowires. In: Yi, GC. (eds) Semiconductor Nanostructures for Optoelectronic Devices. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22480-5_1

Download citation

Publish with us

Policies and ethics