Skip to main content

Challenges in Model Order Reduction for Industrial Problems

  • Chapter
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 16))

  • 1407 Accesses

Abstract

Mathematical challenges arise in many applications in the electronics industry. Device and circuit simulation are well-known examples, and in industry these are typically crucial for circuit and layout optimization. Model order reduction is one of the available tools, and we show when and how, and when not, to use this. We will give an overview of the challenges we are facing, explain how we try to conquer these, discuss the requirements we have to deal with, and indicate where improvements are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM, Philadelphia, USA (2005)

    Book  MATH  Google Scholar 

  3. Ciarlet, P.G., Schilders, W.H.A., ter Maten, E.J.W. (eds.): Numerical methods in electromagnetics, Handbook of Numerical Analysis, vol. 13, Elsevier (2005)

    Google Scholar 

  4. Freitas, F.D., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23(3), 1258–1270 (2008)

    Article  Google Scholar 

  5. Grimme, E.J.: Krylov projection methods for model reduction. Ph.D. thesis, University of Illinois (1997)

    Google Scholar 

  6. Harutyunyan, D., Rommes, J., ter Maten, E.J.W., Schilders, W.H.A.: Simulation of mutually coupled oscillators using nonlinear phase macromodels. IEEE TCAD 28(10), 1456–1466 (2009)

    Google Scholar 

  7. Heinkenschloss, M., Sorensen, D.C., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30(2), 1038–1063 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  9. ter Maten, E.J.W., Doorn, T.S., Croon, J.A., Bargagli, A., Bucchianico, A.D., Wittich, O.: Importance sampling for high speed statistical Monte-Carlo simulations. CASA-report 09-37, TU Eindhoven (2009)

    Google Scholar 

  10. Penzl, T.: Algorithms for model reduction of large dynamical systems. Lin. Alg. Appl. 415(2–3), 322–343 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2001)

    Google Scholar 

  12. Rommes, J., Martins, N.: Efficient computation of transfer function dominant poles using subspace acceleration. IEEE Trans. Power Syst. 21(3), 1218–1226 (2006)

    Article  Google Scholar 

  13. Rommes, J., Martins, N.: Computing large-scale system eigenvalues most sensitive to parameter changes, with applications to power system small-signal stability. IEEE Trans. Power Syst. 23(4), 434–442 (2008)

    Article  MathSciNet  Google Scholar 

  14. Rommes, J., Martins, N.: Computing transfer function dominant poles of large second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008)

    Article  MathSciNet  Google Scholar 

  15. Rommes, J., Schilders, W.H.A.: Efficient methods for large resistor networks. IEEE TCAD 29(1), 28–39 (2010)

    Google Scholar 

  16. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.): Model order reduction: theory, research aspects and applications, Mathematics in Industry, vol. 13. Springer (2008)

    Google Scholar 

  17. Stykel, T.: Gramian based model reduction for descriptor systems. Math. Control Sig. Syst. 16, 297–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. van der Vorst, H.A.: Computational methods for large eigenvalue problems. In: Ciarlet P.G., Lions J.L. (eds.) Handbook of Numerical Analysis, vol. VIII, pp. 3–179. North-Holland, Elsevier, Amsterdam (2001)

    Google Scholar 

  19. Wachspress, E.L.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107(1), 87–90 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by EU Project O-MOORE-NICE!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Rommes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rommes, J. (2012). Challenges in Model Order Reduction for Industrial Problems. In: Michielsen, B., Poirier, JR. (eds) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry(), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22453-9_39

Download citation

Publish with us

Policies and ethics