Skip to main content

Numerical Simulation of a Hydrodynamic Subband Model for Semiconductors Based on the Maximum Entropy Principle

  • Chapter
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 16))

  • 1384 Accesses

Abstract

A hydrodynamic subband model for semiconductors has been formulated in (Mascali and Romano, IL NUOVO CIMENTO 33C:155163, 2010) by closing the moment system derived from the Schrödinger-Poisson-Boltzmann equations on the basis of the maximum entropy principle (MEP). Explicit closure relations for the fluxes and the production terms are obtained taking into account scattering of electrons with acoustic and non-polar optical phonons, as well as surface scattering. Here a suitable numerical scheme is presented for the above model together with simulations of a nanoscale silicon diode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mascali, G., Romano, V.: Hydrodynamic subband model for semiconductors based on the maximum entropy principle. IL NUOVO CIMENTO 33 C, 155–163 (2010)

    Google Scholar 

  2. Datta, S.: Quantum Phenomena, vol. VIII of the Modular Series on Solid State Devices. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  3. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Polizzi, E., Abdallah, N. B.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comp. Phys. 202, 150–180 (2005)

    Article  MATH  Google Scholar 

  5. Galler, M., Schuerrer, F.: A deterministic solver to the Boltzmann-Poisson system including quantization effects for silicon-MOSFETs. In: Progress in Industrial Mathematics at ECMI 2006, Series: Mathematics in Industry, pp. 531–536, Springer, Berlin (2008)

    Google Scholar 

  6. Abdallah, N. B., Caceres, M.J., Carrillo, J.A., Vecil, F.: A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs. J. Comp. Phys. 228, 6553–6571 (2009)

    Article  MATH  Google Scholar 

  7. Jaynes, E.T.: Information Theory and Statistical Mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  8. Wu, N.: The Maximum Entropy Method. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  9. Anile, A.M., Romano, V.: Non parabolic band transport in semiconductors: closure of the moment equations. Cont. Mech. Thermodyn. 11, 307–325 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Romano, V.: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Cont. Mech. Thermodyn. 12, 31–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mascali, G., Romano, V.: Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle. Cont. Meh. Thermodyn. 14, 405–423 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mascali, G., Romano, V.: Si and GaAs mobility derived from a hydrodynamical model for semiconductors based on the maximum entropy principle. Physica A 352, 459–476 (2005)

    Article  Google Scholar 

  13. Liotta, S.F., Romano, V., Russo, G.: Central schemes for balance laws of relaxation type. SIAM J. Numer. Anal. 38, 1337–1356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Romano V.: 2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principle. J. Comput. Phys. 176, 70–92 (2002)

    Article  MATH  Google Scholar 

  15. La Rosa, S., Mascali, G., Romano, V.: Exact maximum entropy closure of the hydrodynamical model for Si semiconductor: the 8-moment case. SIAM J. Appl. Math. 70, 710–734 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221, 439–468 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

G. M. and V. R. acknowledge the financial support by P.R.A., University of Calabria and University of Catania, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mascali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascali, G., Romano, V. (2012). Numerical Simulation of a Hydrodynamic Subband Model for Semiconductors Based on the Maximum Entropy Principle. In: Michielsen, B., Poirier, JR. (eds) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry(), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22453-9_36

Download citation

Publish with us

Policies and ethics