Skip to main content

Mode Selecting Eigensolvers for 3D Computational Models

  • Chapter
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 16))

  • 1395 Accesses

Abstract

For the computation of interior eigenpairs an educated initial guess on the eigenvalue is mandatory in general. The convergence behavior of eigensolvers can be improved by using a starting vector, which should be a reasonable approximation of the searched eigenvector. However, these two provisions do not lead necessarily to the searched eigenpair. We propose an extended selection strategy for the Ritz pairs occurring within the Jacobi-Davidson eigensolver algorithm and compare its performance with the Rayleigh quotient iteration. A complex unsymmetric standard eigenvalue problem resulting from a finite integration discretization of a dielectric disk in free-space serves for numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbenz, P., Hochstenbach, M.E.: A Jacobi–Davidson method for solving complex symmetric eigenvalue problems. SIAM J. Sci. Comput. 25(5), 1655–1673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandlow, B., Sievers, D., Schuhmann, R.: An improved Jacobi-Davidson method for the computation of selected eigenmodes in waveguide cross sections. IEEE Trans. Magn. 46(8), 3461 –3464 (2010)

    Article  Google Scholar 

  3. Computer Simulation Technology AG (CST): CST Studio Suite. http://www.cst.com

  4. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi-Davidson style QR and QZ algorithms for the reduction of matrixpencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)

    Article  MathSciNet  Google Scholar 

  5. Hochstenbach, M.E.: Jacobi-Davidson gateway. http://www.win.tue.nl/casa/research/topics/jd

  6. Notay, Y.: Convergence analysis of inexact Rayleigh quotient iteration. SIAM J. Matrix Anal. Appl. 24, 627–644 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ostrowski, A.M.: On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors V. Arch. Ration. Mech. Anal. 3, 472–481 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  9. Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Smotrova, E., Nosich, A., Benson, T., Sewell, P.: Cold-cavity thresholds of microdisks with uniform and nonuniform gain: quasi-3-D modeling with accurate 2-D analysis. IEEE J. Sel. Top. Quant. Electron. 11(5), 1135 – 1142 (2005)

    Article  Google Scholar 

  11. Weiland, T.: Eine Methode zur Lösung der Maxwellschen Gleichungen für sechskomponentige Felder auf diskreter Basis. AEÜ 31, 116–120 (1977)

    Google Scholar 

  12. Zhao, L., Cangellaris, A.: GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theor. Tech. 44(12), 2555 –2563 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. J. Rommes for bringing the potential application of the RQI to their attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Bandlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandlow, B., Schuhmann, R. (2012). Mode Selecting Eigensolvers for 3D Computational Models. In: Michielsen, B., Poirier, JR. (eds) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry(), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22453-9_14

Download citation

Publish with us

Policies and ethics