Skip to main content

RBF Network with Sliding-Mode Control for Chaos Systems

  • Conference paper
Advances in Information Technology and Education

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 201))

Abstract

In this paper a robust intelligent RBF neural network tracking control system combined with a distance-based sliding-mode control technique is proposed for a class of chaos systems. The proposed adaptive control scheme is developed for a class of chaotic systems with unknown bounded uncertainties. The adaptation laws are derived using a Lyapunov stability analysis, so that both system tracking stability and error convergence can be guaranteed in the closed-loop system. It is used to demonstrate the effectiveness and performance of the proposed robust control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, Z., Han, C., Shi, S.: Modification for synchronization of Rossler and Chen chaotic systems. Physics Letters A 301(3-4), 224–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, J., Li, H.X., Ho, W.C.: Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos, Solitons & Fractals 23(4), 1285–1298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kakmeni, F.M.M., Bowong, S., Tchawoua, C.: Reduced-order synchronization of uncertain chaotic systems via adaptive control. Communications in Nonlinear Science and Numerical Simulation 11(7), 810–830 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, C.C., Su, J.P.: A novel variable structure control scheme for chaotic synchronization. Chaos, Solitons & Fractals 18(2), 275–287 (2003)

    Article  MATH  Google Scholar 

  5. Huang, L., Wang, M., Feng, R.: Synchronization of generalized Henon map via backstepping design. Chaos, Solitons & Fractals 23(2), 617–620 (2005)

    Article  MATH  Google Scholar 

  6. Cao, J., Li, H.X., Ho, W.C.: Synchronization criteria of Luynchronization of Rossler and Chen chaotic dynamical systems using active control. Physics Letters A 278(4), 191–197 (2001)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y., Guan, Z.H., Wen, X.: Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, Solitons & Fractals 19(4), 899–903 (2004)

    Article  MATH  Google Scholar 

  8. Zhang, H., Ma, X.K.: Synchronization of uncertain chaotic systems with parameters perturbation via active control. Chaos, Solitons & Fractals 21(1), 39–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Physical Review Letters 64(8), 821–825 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Behera, L., Gopal, M., Chaudhury, S.: Inversion of RBF networks and applications to adaptive control of nonlinear systems. IEE Proceedings of Control Theory and Applications 142(6), 617–624 (1995)

    Article  MATH  Google Scholar 

  11. Li, Y., Qiang, S., Zhuang, X., Kaynak, O.: Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans. on Neural Networks 15(3) (2006)

    Google Scholar 

  12. Peng, H.T., Ozaki, H., Ozaki, V.T.: A parameter optimization method for radial basis function type models. IEEE Trans. on Neural Networks 14(2), 432–438 (2003)

    Article  Google Scholar 

  13. Lian, J., Lee, Y., Zak, S.H.: Variable neural direct adaptive robust control of uncertain systems. IEEE Trans. on Automatic Control 53(11), 2658–2664 (2008)

    Article  MathSciNet  Google Scholar 

  14. Feng, J., Ng, K.T.: An adaptive demodulator for the chaotic modulation communication system with RBF neural network: Chow, Circuits and Systems I. IEEE Trans. on Fundamental Theory and Applications 47(6), 902–909 (2000)

    Google Scholar 

  15. Leung, H., Hennessey, G., Drosopoulos, A.: Signal detection using the radial basis function coupled map lattice. IEEE Trans. on Neural Networks 11(5), 1133–1151 (2000)

    Article  Google Scholar 

  16. Muller, A., Elmirghani, J.M.H.: Novel approaches to signal transmission based on chaotic signals and artificial neural networks. IEEE Trans. on Communications 50(3), 384–390 (2002)

    Article  Google Scholar 

  17. Choi, B.J., Kwak, S.W., Kim, B.K.: Design of a single-input fuzzy logic controller and its properties. Fuzzy Sets and Syst. 106(3), 299–308 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, B.J., Kwak, S.W., Kim, B.K.: Design and stability analysis of single-input fuzzy logic controller. IEEE Trans. on Systems, Man and Cyber., Part B 30(2), 303–309 (2000)

    Article  Google Scholar 

  19. Jamal, M.N., Ammar, N.N.: Chaos control using sliding-mode theory. Chaos, Solitons & Fractals 33(2), 695–702 (2007)

    Article  Google Scholar 

  20. Ablay, G.: Sliding mode control of uncertain unified chaotic systems: nonlinear analysis. Hybrid Systems 3(4), 531–535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yau, H.T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons & Fractals 22(2), 341–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Physics Letters A 245(6), 511–517 (1998)

    Article  Google Scholar 

  23. Lu, Z., Shieh, L., Chen, S.G., Coleman, N.P.: Simplex sliding mode control for nonlinear uncertain systems via chaos optimization. Chaos, Solitons & Fractals 23(3), 747–755 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, J.F., Hung, M.L., Yang, Y.S., Liao, T.L., Yan, J.J.: Controlling chaos of the family of Rössler systems using sliding mode control. Chaos, Solitons & Fractals 37(2), 609–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, H., Lin, S., Liu, J.: A radial basis function sliding mode controller for chaotic Lorenz system. Physics Letters A 351(4-5), 257–261 (2006)

    Article  MATH  Google Scholar 

  26. Jianjun, N., Yongling, F., Xiaoye, Q.: Design and application of discrete sliding mode control with RBF network-based switching Law. Chinese Journal of Aeronautics 22(3), 279–284 (2009)

    Article  Google Scholar 

  27. Selami, B., Musa, A.: Stable modeling based control methods using a new RBF network. ISA Transactions 49(4), 510–518 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, YC., Hung, LC., Chao, SH. (2011). RBF Network with Sliding-Mode Control for Chaos Systems. In: Tan, H., Zhou, M. (eds) Advances in Information Technology and Education. Communications in Computer and Information Science, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22418-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22418-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22417-1

  • Online ISBN: 978-3-642-22418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics