Skip to main content

Decoding the Binary (71, 36, 11) Quadratic Residue Code

  • Conference paper
Advances in Information Technology and Education

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 201))

  • 2185 Accesses

Abstract

In this paper, an efficient algebraic decoding algorithm (ADA) is proposed to correct all patterns of five errors or less in the binary systematic (71, 36, 11) quadratic residue (QR) code. The method is based on the modification of the ADAs developed by Reed et al and Lin et al. The proposed conditions and the error-locator polynomials for decoding this code will be derived. Simulation result shows that the average decoding time of the proposed ADA is faster than the ADA proposed by Chang et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prange, E.: Cyclic error-correcting codes in two symbols. AFCRC-TN-57-103, Air Force Cambridge Research Center, Cambridge, Mass (1957)

    Google Scholar 

  2. Wicker, S.B.: Error Control Systems for Digital Communication and Storage. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  3. Elia, M.: Algebraic decoding of the (23, 12, 7) Golay codes. IEEE Trans. Inf. Theory 33(1), 150–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Reed, I.S., Yin, X., Truong, T.K., Holmes, J.K.: Decoding the (24, 12, 8) Golay code. Proc. IEE 137(3), 202–206 (1990)

    Google Scholar 

  5. Reed, I.S., Yin, X., Truong, T.K.: Algebraic decoding of the (32, 16, 8) quadratic residue code. IEEE Trans. Inf. Theory 36(4), 876–880 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Reed, I.S., Truong, T.K., Chen, X., Yin, X.: The algebraic decoding of the (41, 21, 9) quadratic residue code. IEEE Trans. Inf. Theory 38(3), 974–986 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, R., Reed, I.S., Truong, T.K., Chen, X.: Decoding the (47, 24, 11) quadratic residue code. IEEE Trans. Inf. Theory 47(3), 1181–1186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, Y., Truong, T.K., Reed, I.S., Cheng, H.Y., Lee, C.D.: Algebraic decoding of (71, 36, 11) (79, 40, 15), and (97, 49, 15) quadratic residue codes. IEEE Trans. on Comm. 51(9), 1463–1473 (2003)

    Article  Google Scholar 

  9. Truong, T.K., Chang, Y., Chen, Y.-H., Lee, C.D.: Algebraic decoding of (103, 52, 19) and (113, 57, 15) quadratic residue code. IEEE Trans. on Comm. 53(5), 749–754 (2005)

    Article  Google Scholar 

  10. Truong, T.K., Shih, P.Y., Su, W.K., Lee, C.D., Chang, Y.: Algebraic decoding of the (89, 45, 17) quadratic residue code. IEEE Trans. Inf. Theory 54(11), 5005–5011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, T.C., Truong, T.K., Lee, H.P., Chang, H.C.: Algebraic decoding of the (41, 21, 9) quadratic residue code. Inf. Sci. 179(19), 3451–3459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, T.C., Chang, H.C., Lee, H.P., Chu, S.I., Truong, T.K.: Decoding of the (31, 16, 7) quadratic residue code. J. Chin. Inst. Eng. 33(4), 573–580 (2010)

    Article  Google Scholar 

  13. Lin, T.C., Lee, H.P., Chang, H.C., Chu, S.I., Truong, T.K.: High speed decoding of the binary (47, 24, 11) quadratic residue code. Inf. Sci. 180(20), 4060–4068 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chien, R.T.: Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes. IEEE Trans. Inf. Theory 10(4), 357–363 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, HP., Chang, HC. (2011). Decoding the Binary (71, 36, 11) Quadratic Residue Code. In: Tan, H., Zhou, M. (eds) Advances in Information Technology and Education. Communications in Computer and Information Science, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22418-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22418-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22417-1

  • Online ISBN: 978-3-642-22418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics