Skip to main content

Modeling and Simulation of High-Temperature Processes

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.,volume 18))

Abstract

The practical application of modeling methods requires extensive knowledge of the laws governing the processes that occur in a metal–slag–gas system. Therefore, we will turn to well-known thermodynamic and kinetic methods of analysis which provide ways to reveal both the general laws of interaction and the special features of the individual steps of reactions and of the behavior of the components of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moiseev, G.K., Vatolin, N.A.: Thermodynamic modeling: concentration, application, examples. Rasplavy 5, 15–40 (1990)

    Google Scholar 

  2. Marshuk, L.A., et al.: Use of thermodynamic modeling for devising theoretical principles for obtaining new ferroalloys. In: Physicochemical Principles of Metallurgical Processes. Part III (in Russian), pp. 179–180. Chermetinformazia, Moscow (1991)

    Google Scholar 

  3. Grigoryan, V.A., Belyanchikov, L.P., Stomakhin, A.Ya.: Theoretical Foundations of Electro-Steelmaking Processes (in Russian), p. 272. Metallurgiya, Moscow (1987)

    Google Scholar 

  4. Kulikov, I.S.: Deoxidation of Metals (in Russian), p. 504. Metallurgiya, Moscow (1975)

    Google Scholar 

  5. Sabirzyanov, T.G.: Activity and solubility of carbon in iron melts. Izv Vyssh Uchebn Zaved Chern Metall 1, 1–4 (1989)

    Google Scholar 

  6. Mikhailov, G.G.: Thermodynamic principles of the optimization of the deoxidation of steel and the modification of nonmetallic inclusions. Doctoral dissertation, Moscow (1985)

    Google Scholar 

  7. Ponomarenko, A.G.: Questions in the thermodynamics of phases of variable composition with an itinerant electronic system. Zh Fiz Khim 7, 1668–1674 (1974)

    Google Scholar 

  8. Kireev, P.S.: Physics of Semiconductors (in Russian), p. 584. Vysshaya Shkola, Moscow (1975)

    Google Scholar 

  9. Mikhailets, V.N., et al.: Physicochemical models for predicting the distribution of components between a metal and a slag under oxidative conditions. In: Physicochemical and Technological Databases for Optimizing Metallurgical Technologies (in Russian), pp. 154–161. Dnepropetrovsk (1988)

    Google Scholar 

  10. Laptev, D.M.: Analysis of inaccuracies in the literature on the thermodynamics of solutions. Izv Vyssh Uchebn Zaved Chern Metall 12, 5–11 (1987)

    MathSciNet  Google Scholar 

  11. Yanagase, T., Suginahara, Y.: Studies on constitution of vitreous silicates by infrared absorption spectra. Trans Jpn Inst Metals 11, 4000–4003 (1970)

    Google Scholar 

  12. Ezikov, V.I., Pasishnik, S.V., Chuchmarev, S.K.: Application of trimethylsilylation and rapid quenching to the investigation of the constitution of anions in silicate melts. In: Abstracts of Reports to the 6th All-Union Conference on the Constitution and Properties of Metallic and Oxide Melts. Part 3 (in Russian), pp. 229–230, Sverdlovsk, 1986

    Google Scholar 

  13. Stolyarova, V., et al.: High temperature mass spectrometric study of multicomponent silicate systems. In: Proceedings 4th International Conference on Molten Slags and Fluxes, pp. 185–188. Sendai, Japan (1992)

    Google Scholar 

  14. Kozheurov, V.A.: Thermodynamics of Metallurgical Slags (in Russian), p. 163. Metallurgizdat, Sverdlovsk (1995)

    Google Scholar 

  15. Ban-Ya, S.: Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on the regular solution model. In: Proceedings 4th International Conference on Molten Slags and Fluxes, pp. 8–13. Sendai, Japan (1992)

    Google Scholar 

  16. Jahanshaki, S., Wright, S.: Aspects of the regular solution model and its application to metallurgical slags. In: Proceedings 4th International Conference on Molten Slags and Fluxes, pp. 61–66. Sendai, Japan (1992)

    Google Scholar 

  17. Snitko, Yu.P., Surova, Yu.N., Lyakishev, N.P.: Method for determining the heats of mixing of oxides. In: Abstracts of Reports to the 5th All-Union Conference on the Constitution and Properties of Metallic and Slag Melts. Part 3 (in Russian), pp. 39–41. Sverdlovsk, 1983

    Google Scholar 

  18. Gyae, H., et al.: A statistical thermodynamics model of slags: applications to systems containing S, P, P2O5, and Cr oxides. In: Proceedings 4th International Conference on Molten Slags and Fluxes, pp. 103–108. Sendai, Japan (1992)

    Google Scholar 

  19. Popel’, S.I., Sotnikov, A.I., Boronenkov, V.N.: Theory of Metallurgical Processes (in Russian), p. 403. Metallurgiya, Moscow (1986)

    Google Scholar 

  20. Sinyarev, G.B., et al.: Application of Computers to Thermodynamic Calculations of Metallurgical Processes (in Russian), p. 263. Nauka, Moscow (1982)

    Google Scholar 

  21. Mochalov, S.P., et al.: Method for the mathematical modeling and calculation of the equilibrium conditions in complex steelmaking systems. In: Modeling of Physicochemical Systems and Technological Processes in Metallurgy (in Russian), pp. 132–133. Novokuznetsk Institute of Metal Press, Novokuznetsk (1991)

    Google Scholar 

  22. Gasik, M.M.: Carbon–oxygen equilibrium in liquid iron during vacuum–carbon deoxidation. Izv Vyssh Uchebn Zaved Chern Metall 10, 9–13 (1991)

    Google Scholar 

  23. Zhancheng, G., et al.: A model on slag-metal reaction kinetics. In: Proceedings 4th International Conference on Molten Slags and Fluxes, pp. 308–313. Sendai, Japan (1992)

    Google Scholar 

  24. Kazachkov, E.A.: Calculations Based on the Theory of Metallurgical Processes (in Russian), p. 288. Metallurgiya, Moscow (1988)

    Google Scholar 

  25. Shalimov, M.P., et al.: Calculation of the equilibrium distribution of elements between metallic and slag melts. In: Structure and Properties of Slag Melts (in Russian), pp. 62–66. Kurgan Mach Build Institute Press, Kurgan (1984)

    Google Scholar 

  26. Ban-Ya, S., Dong-Shim, Y.: Application of the regular solution model to steelmaking slags. In: Proceeding of the 10th Soviet-Japanese Symposium on the Physicochemical Principles of Metallurgical Processes (in Russian), pp. 21–41. Metallurgiya, Moscow (1983)

    Google Scholar 

  27. Turkdogan, E.T.: Physical Chemistry of High-Temperature Processes (in Russian), p. 344. Metallurgiya, Moscow (1985)

    Google Scholar 

  28. Zinigrad, M.I.: Kinetics and mechanism of the interaction of metals and oxide melts. Doctoral dissertation, p. 419, Sverdlovsk (1981)

    Google Scholar 

  29. Medzhibozhskii, M.Ya., Konoplya, V.G., Plokhikh, G.A.: Some laws governing the distribution of phosphorus between a metal with a high phosphorus content and a slag. In: Electrochemistry and Melts (in Russian), pp. 201–207. Nauka, Moscow (1974)

    Google Scholar 

  30. Chuiko, N.M., Zaozernyi, M.T.: Distribution of tungsten between a metal, a slag, and a gas phase during the smelting of high-speed steels. Metally 6, 20–26 (1974)

    Google Scholar 

  31. Zamoruev, V.M.: Tungsten in Steel (in Russian), p. 199. GNTI, Moscow (1962)

    Google Scholar 

  32. Adel’shin, Yu.G., et al.: Thermodynamic analysis of the oxidation of tungsten in a steelmaking arc furnace. Izv Vyssh Uchebn Zaved Chern Metall 11, 51–54 (1984)

    Google Scholar 

  33. Perevalov, N.M., Mogutnov, B.M., Shvartsman, L.A.: Influence of the basicity of a slag on the oxidation of elements of the chromium subgroup dissolved in liquid iron. Dokl Akad Nauk SSSR 124(1), 150–152 (1959)

    Google Scholar 

  34. Perevalov, N.M., Mogutnov, B.M., Shvartsman, L.A.: Influence of calcium oxide on the distribution of tungsten between liquid iron and a slag. Izv Akad Nauk SSSR Metall Topl 1, 22–28 (1959)

    Google Scholar 

  35. Merkulov, V.F., et al.: Technology for recovering tungsten from boring bit scrap. Stal’ 10, 30–32 (1984)

    Google Scholar 

  36. Okol’zdaev, A.G., et al.: Influence of the oxidative capacity of the slag on the distribution of tungsten between the metallic and oxide phases. In: Abstracts of Reports to the 6th All-Union Conference on the Constitution and Properties of Metallic and Slag Melts, Part 3 (in Russian), pp. 238–239. Sverdlovsk, 1986

    Google Scholar 

  37. Yavoiskii, V.I.: Theory of Steel Production Processes (in Russian), p. 792. Metallurgizdat, Moscow (1967)

    Google Scholar 

  38. Bagryanskii, K.V.: Electric-Arc Welding and Surfacing under Ceramic Fluxes (in Russian), p. 184. Tekhnika, Kiev (1976)

    Google Scholar 

  39. Ignatov, M.N.: Improving the quality of welded joints of nickel and nickel alloys by using transition metal carbides in the electrode coatings. Candidate dissertation, p. 145, Perm′ Polytechnic Institute, Perm′ (1987)

    Google Scholar 

  40. Burylev, B.P., Kretov, A.I., Moisov, L.P.: Thermodynamic activity of components of welding fluxes. Avtom Svarka 2, 67–69 (1978)

    Google Scholar 

  41. Burylev, B.P., Kretov, A.I.: Influence of the thermodynamic activity of the slag components on the properties of the metal. In: Physicochemical Investigations of Metallurgical Processes (in Russian), vol. 8, pp. 88–90. Ural Polytechnic Institute Press, Sverdlovsk (1980)

    Google Scholar 

  42. Hideaki, S., Ryo, J.: Manganese equilibrium between molten iron and MgO-saturated CaO–FetO–SiO2–MnO–P2O5 slags. Trans. Iron Steel Inst. Jpn. 24(4), 257–265 (1984)

    Article  Google Scholar 

  43. Globovskii, V.G., Burtsev, V.T.: Melting Metals and Alloys in the Suspended State (in Russian), p. 176. Metallurgiya, Moscow (1974)

    Google Scholar 

  44. Boronenkov, V.N., Esin, O.A.: Kinetics of the simultaneous occurrence of several heterogeneous reactions with common reactants. Zh Fiz Khim 8, 2022–2027 (1970)

    Google Scholar 

  45. Frank-Kamenetskii, D.A.: Diffusion and Heat Transfer in Chemical Kinetics, 2nd edn. Plenum Press, New York (1969)

    Google Scholar 

  46. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  47. Medzhibozhskii, M.Ya., Zinov’ev, V.T., Geineman, A.V.: Influence of several factors on the rate of carbon boil in an open-hearth bath. Izv Vyssh Uchebn Zaved Chern Metall 6, 47–53 (1960)

    Google Scholar 

  48. Kazakov, N.I., Filippov, S.I.: Kinetics of the oxidation of carbon by liquid steel with electromagnetic stirring. Izv Vyssh Uchebn Zaved Chern Metall 11, 15–21 (1961)

    Google Scholar 

  49. Boronenkov, V.N.: Kinetic analysis of the oxidation of impurities in iron by a molten slag. In: Physicochemical Investigations of Metallurgical Processes: Proceedings of Institutions of Higher Education of the Russian Federation, No. 1 (in Russian), pp. 18–34. Sverdlovsk (1973)

    Google Scholar 

  50. Boronenkov, V.N., Esin, O.A.: Kinetic equation of a multicomponent reaction in a diffusion-controlled regime. Izv Vyssh Uchebn Zaved Chern Metall 9, 17–20 (1970)

    Google Scholar 

  51. Boronenkov, V.N., Shanchurov, S.M., Zinigrad, M.I.: Kinetics of the interaction of a multicomponent metal with a slag in a diffusion-controlled regime. Izv Akad Nauk SSSR Met 6, 21–27 (1979)

    Google Scholar 

  52. Boronenkov, V.N., Salamatov, A.M.: Mathematical estimation of the kinetics of the interaction of a multicomponent metal with the slag during submerged-arc welding. Avtomat Svarka 8, 19–24 (1985)

    Google Scholar 

  53. Churkin, A.S., Toporishchev, G.A., Esin, O.A.: Kinetic features of the desulfurization of high-silicon pig iron by a flux of the CaO–SiO2–Αl2Ο3 system. Izv Akad Nauk SSSR Met 1, 37–44 (1971)

    Google Scholar 

  54. Boronenkov, V.N., Pozdnyakov, A.D.: Mathematical model of the kinetics of the simultaneous oxidation of impurities in iron by a molten slag. In: Physicochemical Principles of Metallurgical Processes. No. 7 (in Russian), pp. 75–83. Ural Polytechnic Institute Press, Sverdlovsk (1979)

    Google Scholar 

  55. Damaskin, B.B., Petrii, O.A.: Introduction to Electrochemical Kinetics (in Russian), p 416. Vyshaya Shkola, Moscow (1975)

    Google Scholar 

  56. Boronenkov, V.N., Shalimov, M.P., Shanchurov, S.M.: Method for analyzing the kinetics of simultaneously occurring electrode reactions under non-steady-state conditions. Rasplavy 5, 12–17 (1994)

    Google Scholar 

  57. Vetter, K.: Electrochemical Kinetics. Academic, New York (1967)

    Google Scholar 

  58. Delahay, P.: Double Layer and Electrode Kinetics. Interscience, New York (1965)

    Google Scholar 

  59. Turchak, L.I.: Fundamentals of Numerical Methods (in Russian), p. 320. Nauka, Moscow (1987)

    Google Scholar 

  60. Boronenkov, V.N., Shanchurov, S.M.: Kinetics of reactions between a metal and a slag under a non-steady-state diffusion regime. Metally 3, 5–11 (1992)

    Google Scholar 

  61. Kostin, N.A., Kublanovskii, V.S., Zabludovskii, V.A.: Pulsed Electrolysis (in Russian), p. 167. Naukova Dumka, Kiev (1989)

    Google Scholar 

  62. Tsymbal, V.P.: Mathematical Modeling of Metallurgical Processes, p. 240. Metallurgiya, Moscow (1986)

    Google Scholar 

  63. Esin, O.A.: Application of polymer theory to molten slags. In: Physicochemical Investigations of Metallurgical Processes (in Russian), vol. 1, pp. 5–17. Ural Polytechnic Institute Press, Sverdlovsk (1973)

    Google Scholar 

  64. Zalomov, N.I., Boronenkov, V.N., Shanchurov, S.M.: Method for kinetic analysis of the oxidation of silicon by polymeric oxide melts. Rasplavy 2(1), 12–17 (1988)

    Google Scholar 

  65. Zalomov, N.I., Shalimov, M.P., Boronenkov, V.N.: Kinetics of electrochemical processes on a metal/polymeric-oxide-melt interface. In: Constitution and Properties of Metallic and Slag Melts, Part 2 (in Russian), Vol. 3, pp. 199–203. Chelyabinsk Polytechnic Institute Press, Chelyabinsk (1990)

    Google Scholar 

  66. Esin, O.A., Gavrilov, L.K.: Electrode polarization at high temperatures. Zh Fiz Khim 29(3), 566–575 (1955)

    Google Scholar 

  67. Novikov, V.K.: Influence of the composition of the molten metal and the molten slag on the kinetics of the transport of silicon and sulfur through the interface between them. Candidate dissertation, p. 175, Sverdlovsk (1972)

    Google Scholar 

  68. Esin, O.A., Gel’d, P.V.: Physical Chemistry of Pyrometallurgical Processes (in Russian), p. 704. Metallurgizdat, Moscow (1966)

    Google Scholar 

  69. Delahay, P.: New Instrumental Methods in Electrochemistry. Interscience, New York (1954)

    Google Scholar 

  70. Damaskin, B.B.: Principles of Modern Methods for Studying Electrochemical Reactions (in Russian), p. 104. Moscow State University Press, Moscow (1965)

    Google Scholar 

  71. Sotnikov, A.I.: Structure of the metal/oxide-melt interface and special features of electrochemical methods in metallurgical systems. In: Physicochemical Investigations of Metallurgical Processes, vol. 2, pp. 40–49. Ural Polytechnic Institute Press, Sverdlovsk (1974)

    Google Scholar 

  72. Voinov, S.G., Shalimov, A.G., Kosoi, L.F., Kalinnikov, E.S.: Refining Steel by Synthetic Slags (in Russian), p. 186. Metallurgiya, Moscow (1970)

    Google Scholar 

  73. Fefelov, A.S.: Metallurgical and technological features of alloying a metal with boron. Candidate dissertation, p. 190, Ural Polytechnic Institute Press, Sverdlovsk (1982)

    Google Scholar 

  74. Zinigrad, M.I., et al.: Kinetics of the interaction of a boron-containing metallic melt with an oxide electrolyte. Élektrokhimiya 13(1), 74–78 (1986)

    Google Scholar 

  75. Flyagin, A.A., Zinigrad, M.I.: Kinetics of the passage of aluminum and boron through a liquid-steel/oxide-melt interface. Izv Akad Nauk SSSR Met 1, 50–55 (1986)

    Google Scholar 

  76. Sotnikov, A.I., Esin, O.A., Nikitin, Yu.P.: Chemical polarization at high temperatures. Dokl Akad Nauk SSSR 152(5), 1173–1176 (1963)

    Google Scholar 

  77. Melamud, S.G.: Investigation of the kinetics of high-temperature electrode processes involving carbon, silicon, and chromium in a metal–oxide-melt system. Candidate dissertation, p. 185, Sverdlovsk (1970)

    Google Scholar 

  78. Lepinskikh, B.M., Kaibichev, A.V., Savel’ev, Yu.A.: Diffusion of Elements in Liquid Iron-Group Metals (in Russian), p. 192. Nauka, Moscow (1974)

    Google Scholar 

  79. Flyagin, A.A.: Features of the passage of aluminum through a metal/slag interface during the treatment of steel with a synthetic slag. Candidate dissertation, p. 167, Sverdlovsk (1980)

    Google Scholar 

  80. Barmin, L.N., et al.: Application of a coulostatic method to the study of the rate of ion exchange between liquid manganese and an oxide melt. In: Physical Chemistry and Electrochemistry of Molten Salts and Slags. Part II (in Russian), pp. 99–102. Institute Electrochemistry Press, Kiev (1969)

    Google Scholar 

  81. Panov, S.P., Zinigrad, M.I., Barmin, L.M.: Investigation of the fast step of the desulfurization of an iron–carbon melt by a slag. In: Scientific Reports to the 6th All-Union Conference on the Constitution and Properties of Metallic and Slag Melts: Investigations of Slag Melts (in Russian), vol. 3, pp. 60–63. Sverdlovsk (1980)

    Google Scholar 

  82. Sotnikov, A.I.: Structure of the metal/oxide-melt interface and features of electrochemical relaxation methods of investigation in metallurgical systems. In: Physicochemical Investigations of Metallurgical Processes: Proceedings of Institutions of Higher Education of the Russian Federation (in Russian), vol. 1, pp. 40–54 (1974)

    Google Scholar 

  83. Frumkin, A.N.: Kinetics of Electrode Processes (in Russian), p. 318. Izd MGU, Moscow (1952)

    Google Scholar 

  84. Damaskin, B.B., Petrii, O.A.: Foundations of Theoretical Electrochemistry (in Russian), p. 239. Vysshaya Shkola, Moscow (1978)

    Google Scholar 

  85. Popel’, S.I.: Investigation of phenomena on phase boundaries in the steelmaking process. Doctoral dissertation, pp 347, Sverdlovsk (1959)

    Google Scholar 

  86. Pavlov, V.V., Popel’, S.I., Esin, O.A.: Dependence of the interfacial tension on the composition and temperature. In: Surface Phenomena in Melts and Solid Phases Derived from them (in Russian), pp. 136–141. Kabardino Balkar Publishing, Nal’chik (1965)

    Google Scholar 

  87. Yakobashvili, S.B.: Surface Properties of Welding Fluxes and Slags (in Russian), p. 207. Technika, Kiev (1970)

    Google Scholar 

  88. Andronov, V.N., Chekin, B.V., Nesterenko, S.V.: Liquid Metals and Slags. Handbook Edition (in Russian), p. 128. Metallurgiya, Moscow (1977)

    Google Scholar 

  89. Zinigrad, M.I., et al.: Investigations of the distribution of sulfur between an Fe–C–S melt and a CaO–Al2O3–MgO slag. In: Physicochemical Investigations of Metallurgical Processes, vol. 9, pp. 60–64. Ural Polytechnic Institute Press, Sverdlovsk (1981)

    Google Scholar 

  90. Zinigrad, M.I., et al.: Kinetic features of the desulfurization of an iron–carbon melt by a slag. Izv Vyssh Uchebn Zaved Chern Metall 2, 4–6 (1981)

    Google Scholar 

  91. Losev, V.V., Gorodetskii, R.V.: Stepwise occurrence of the discharge and ionization of metals. Élektrokhimiya 3(9), 1061–1070 (1967)

    Google Scholar 

  92. Shantarin, V.D., Esin, O.A., Boronenkov, V.N.: Chemical component of the anodic polarization of molten iron saturated with carbon. Élektrokhimiya 3(6), 775–778 (1967)

    Google Scholar 

  93. Buler, P.I., Esin, O.A., Nikitin, Yu.P.: Influence of the composition on the anodic polarization of iron alloys with carbon and nickel. Élektrokhimiya 3(3), 288–293 (1967)

    Google Scholar 

  94. Fugman, G.I.: Kinetics of metallurgical reactions involving titanium and carbon. Candidate dissertation, p. 185, Sverdlovsk (1972)

    Google Scholar 

  95. Sotnikov, A.I.: Kinetics of Electrode Processes on a Metal/Oxide-Melt Interface (in Russian), p. 80. Ural Polytechnic Institute Press, Sverdlovsk (1981)

    Google Scholar 

  96. Shalimov, M.P., Zinigrad, M.I.: Kinetic features of ion exchange on an iron–carbon-melt/slag interface. In: Physicochemical Principles of Metallurgical Processes. Part II (in Russian), pp. 7–9. Chermetinformazia, Moscow (1991)

    Google Scholar 

  97. Medzhibozhskii, M.Ya., et al.: Dynamic computer simulation of the decarbonization of steel. Izv Vyssh Uchebn Zaved Chern Metall 7, 158–161 (1977)

    Google Scholar 

  98. Sevic, D., Cureija, D.: Temperaturna ovisnost rastvorljivosti uglika u troskama. Zelez Zb 16(4), 123–126 (1982)

    Google Scholar 

  99. Novikov, V.K.: Development of the polymer model of silicate melts. Rasplavy 1(6), 21–33 (1987)

    Google Scholar 

  100. Zinigrad, M.I., et al.: Investigation of the distribution of sulfur between Fe–C–S and CaO–Al2O3–MgO melts. In: Physicochemical Investigations of Metallurgical Processes, No. 9 (in Russian), pp. 60–64. Ural Polytechnic Institute Press, Sverdlovsk (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zinigrad .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boronenkov, V., Zinigrad, M., Leontiev, L., Pastukhov, E., Shalimov, M., Shanchurov, S. (2012). Modeling and Simulation of High-Temperature Processes. In: Phase Interaction in the Metal - Oxide Melts - Gas -System. Engineering Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22377-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22377-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22376-1

  • Online ISBN: 978-3-642-22377-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics