Skip to main content

Stochastic Search with Locally Clustered Targets: Learning from T Cells

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Abstract

Searching a space with locally clustered targets (think picking apples from trees) leads to an optimization problem: When should the searcher leave the current region, and invest the time to travel to another one? We consider here a model of such a search process: infection screening by T cells in the immune system. Taking an AIS perspective, we ask whether this model could provide insight for similar problems in computing, for example Las Vegas algorithms with expensive restarts or agent-based intrusion detection systems. The model is simple, but presents a rich phenomenology; we analytically derive the optimal behavior of a single searcher, revealing the existence of two characteristic regimes in the search parameter space. Moreover, we determine the impact of perturbations and imprecise knowledge of the search space parameters, as well as the speedup gained by searching in parallel. The results provide potential new directions for developing tools to tune stochastic search algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephens, D.W., Krebs, J.R.: Foraging Theory. Princeton University Press, Princeton (1987)

    Google Scholar 

  2. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 7(1), 1289–1296 (2000)

    Google Scholar 

  3. Hilker, M., Luther, K.: Artificial cell communication in distributed systems. In: AINA 2008, pp. 1034–1041. IEEE Computer Society Press, Washington, DC, USA (2008)

    Google Scholar 

  4. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann (2005)

    MATH  Google Scholar 

  5. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process. Lett. 47, 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Janeway, C., Travers, P., Walport, M., Shlomchick, M.: Immunobiology. Garland Science (2005)

    Google Scholar 

  7. Blattman, J.N., Antia, R., Sourdive, D.J., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., Ahmed, R.: Estimating the precursor frequency of naive antigen-specific CD8 T cells. Journal of Experimental Medicine 195(5), 657–664 (2002)

    Article  Google Scholar 

  8. Westermann, J., Pabst, R.: Distribution of lymphocyte subsets and natural killer cells in the human body. Clin. Investig. 70, 539–544 (1992)

    Article  Google Scholar 

  9. von Andrian, U.H.: Intravital microscopy of the peripheral lymph node mirocirculation in mice. Microcirculation 3, 287–300 (1996)

    Article  Google Scholar 

  10. Wei, S.H., Parker, I., Miller, M.J., Cahalan, M.D.: A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunological Reviews 195, 136–159 (2003)

    Article  Google Scholar 

  11. Glasser, M.L., Zucker, I.J.: Extended watson integrals for the cubic lattices. PNAS 74, 1800–1801 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weiss, G.H.: Asymptotic form for random walk survival probabilities on three-dimensional lattices with traps. PNAS 77(8), 4391–4392 (1980)

    Article  MATH  Google Scholar 

  13. Soderberg, K.A., Payne, G.W., Sato, A., Medzhitov, R., Segal, S.S.: Innate control of adaptive immunity via remodeling of lymph node feed arteriole. PNAS 102(45), 16315–16320 (2005)

    Article  Google Scholar 

  14. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Advances in Computational Mathematics 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mempel, T.R., Henrickson, S.E., von Andrian, U.H.: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reischuk, R., Textor, J. (2011). Stochastic Search with Locally Clustered Targets: Learning from T Cells. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics