Skip to main content

Variation in Artificial Immune Systems: Hypermutations with Mutation Potential

  • Conference paper
Artificial Immune Systems (ICARIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Included in the following conference series:

Abstract

Specific hypermutation operators are one of the distinguishing features of artificial immune systems. They can be considered in isolation and compared with other variation operators. For a specific immune-inspired hypermutation operator, hypermutations with inversely proportional mutation potential, an analysis of its ability to locate optima precisely and in large distance from other promising regions of the search space is presented. Four different specific variants of this mutation operator are considered. Two of these turn out to be very inefficient in locating optima precisely while the other two are able to do this efficiently. Based on these findings an improved version of this kind of mutation is introduced that removes some of the deficiencies and allows to parameterize the trade-off between efficiency in local search and the ability to perform huge changes in single mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Review (2011)

    Google Scholar 

  2. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)

    Book  Google Scholar 

  3. Cortés, N.C., Coello Coello, C.A.: Multiobjective optimization using ideas from the clonal selection principle. In: GECCO 2004, pp. 158–170 (2003)

    Google Scholar 

  4. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal selection algorithms: A comparative case study using effective mutation potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cutello, V., Nicosia, G., Oliveto, P.: Analysis of an evolutionary algorithm with hypermacromutation and stop at first constructive mutation heuristic for solving trap functions. In: Proc. of the 2006 ACM Symp. on Applied Computing (SAC 2006), pp. 945–949 (2006)

    Google Scholar 

  6. Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: A characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. on Evolutionary Comp. 11(1), 101–117 (2007)

    Article  Google Scholar 

  8. Cutello, V., Nicosia, G., Romeo, M., Oliveto, P.S.: On the Convergence of Immune Algorithms. In: Proc. of the IEEE Symp. on Foundations of Computational Intelligence (FOCI 2007), pp. 409–415 (2007)

    Google Scholar 

  9. Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications. Auerbach (2008)

    Google Scholar 

  10. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  12. De Jong, K.A.: Evolutionary Computation. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  13. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. John Wiley & Sons, West Sussex (1968)

    MATH  Google Scholar 

  15. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  16. Jansen, T., Wegener, I.: On the choice of the mutation probability for the (1+1) EA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000)

    Google Scholar 

  17. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic contiguous hypermutations. Theoretical Computer Science 412(6), 517–533 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function optimisation. In: Proc. of the 5th Annual Conf. on Genetic and Evolutionary Computation (GECCO 2003), pp. 207–218 (2003)

    Google Scholar 

  19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  20. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant colony optimization and local search. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 132–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Computational Complexity. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  22. Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 112–122. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proc. of the 10th ACM SIGEVO Conf. on Foundations of Genetic Algorithms (FOGA 2009), pp. 39–46 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, T., Zarges, C. (2011). Variation in Artificial Immune Systems: Hypermutations with Mutation Potential. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics